Compressible Fluid Dynamics Past Papers
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1 2018-19 (MOCK)

1.1 Q1
1. (Part I)

(a)
u +uu, =0 with  u(z,0) = f(xg)

LHS = f'(z — ut) - (—u) +u - f'(x —ut) = 0 = RHS
(b) Characteristic lines are lines along which characteristic variables are constant, fl—;‘ =0.
dx = f(xo)dt

The solution along these curves have eigenvalue of f(zy), which is a constant.

()
Solve: 4107 tf (o)
x— (zog+€) =tf(xg+e)

tf(zo) — € =1tf(zo +¢€)

lim f(!lf() + E) — f($0) _ _% _ f/(x())

e—0 €

1 f(xo)

t=——— and x=uz9—
J' (o) ey
(d) If f'(zo) > 0, nearby lines separated by € will meet at ¢ < 0. The characteristic lines never

meet so the solution is single valued. The characteristic is expansive.

(e) If f'(x) <0, the characteristics meet at min(t) = m

So,

(Part II)

(a) The CFL coefficient describes the ratio between the maximum physical wave speed to maxi-
mum speed of information travel on the grid:

At
CFL = |a|—
lal
It is used for calculating the maximum stable timestep for the simulation.
(b) Taylor expansion: f(x + Az) = f(x)+ %% + (A;)2 227’;

du (A)? 9*u?

ntl — —?A — At3
U, u; + ot t+ 5 o +(9( t)
N . oul (Ax)? &%ul 3

n o Oul (Ax)? O%up 5
Upy = U —|—%Ax+ 5 Ap + O(Ax?)
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()

n n
Uipg — Uy

Subtracting: d,u = AL =L 1 O(Az?)
Adding: 0 ,ul = Ui +Z;;:21 —2ul + O(Az?)
Note:
(O + ady)u =0
(O — ady) (0 + ady)u =0
= (Oy — a*0pp)u =0
Continuing:

(atttt - a4amxzx>u =0

Cannot cancel third order.

8 O*ul
nl — gn CAL 4 IAP
v S, 27 o
=u} — (aAt)0,ul + <§a2At2> Ozt + O(AL)
. laAt . La?At?, n n

=u; — §A_( i1~ Uq) 5@(“#1 +ui g — 2u) + O(AI27 At3)
1 1

— " — §C(ui+1 —ul )+ 502(u?+1 +ul | —2ul) + O(Az?, At?)

ul
1 2 1 n 1 2 1 n 2\, n 2 3
=\ 5¢ ¢ )uit{5¢ —5¢ up  + (1 —c)ui + O(Az®, At?)

1 1
= 5c(c + Dul | — éc(l —c)uly + (1= A)ul

alAt
Ax

(d) Second order in space and third order in time?

where ¢ =

(e) 1. Maintains the bell-shape, but dispersive effects (phase error) tend to skew the shape.
ii. Oscillations produced at the edge of discontinuities.

(f)
At z+1/2 At x+1/2
/ / uy dxdt + / / sdxdt =0
z—1/2 z—1/2

x+1/2
/ w(e A — u(e.0)de 4 [ Fule 4 1/2.0) — flulz — 1/2).6) dé =0

-1/2 0
Define cell average:

1 Tiy1/2 1 At

Ut = — u(z,t")dx and fi+1/2 = Al

i Ar (xi-i-l/?vt) dt

Ti-1/2
Am%mrl = Aru} — At[fi—f—l/Q - fi—l/Q]
For linear advection with a > 0, fi;1/2 = au,;. Hence,
n+1 n

" . aAt(
oo Az

- ui—l)

4
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1.2 Q2

2. (Part I)

(a) A Riemann problem is an initial value problem consisting of a conservation equation and
two piece-wise constant initial states separated by a single discontinuity at = xy. It has
non-trivial exact solution.

(b)
p1uUl = Pz
P15 + p1 = patis + po
U1 (01 B+ p1) = Ue(p2 B + p2)

S
0> U -
; I
R, A
CReS 5:9 <RTEAD

4
0‘?\?‘\’ £ 7
o 4 § /

(c) Across a contact wave, pressure and velocity is constant, but the density jumps. We can just
use {p7, Pk, u",p"}

(d)

prlur — 8) = pp(u* = 8) = Qr = pj(u" - 5)
pL(uL — 5)2 +prL = p*L(u* — 5)2 —l—p*

Qr(ur — S) +pr = Qr(u* — S) +p*
QL(UL - U*) =p" —pL

(Part 11)
(a) The FORCE flux is the average of the Lax-Friedrichs flux and Richtmyer flux.

1
Ffﬁl/%zcE = §(Ff£/z + Ff’i/z)

FORCE scheme is:

u

n n At roRrcE FORCE
= (F i—1/2 )

Ui — 5 \Fig1)2

1 K3 Ax
LF is first-order, RI is second-order, FORCE is first-order.
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(b)

The FORCE scheme is a first-order method, which capture discontinuities well but suffer
from greater diffusion. The Richtmyer method is a second-order method that is more accu-
rate in smooth areas but suffer from oscillations near discontinuities. Combining those two
methods can lead to a high resolution method which is second-order everywhere except near
discontinuities, where it reverts to the first-order method. The process of combining fluxes
from different method is called flux limiting. The resulting scheme is a high resolution TVD

method.

FLIC FORCE RI FORCE
Tisig = fivip~ + Givaye (fi+1/2 — Jivijo )

where FFORCE ig first-order monotone scheme. f# is a high-order scheme. ¢; 12 is the

limiter function. The method is called flux limiter centred scheme (FLIC). Then,

un—l—l At fFLIC fFLIC)

_.n
i U — _Ax( i+1/2 — Ji—1/2

An example of the limiter function is the minibee:

r is the a measure of the change of slope:

Ay
r = —
Audownw
SLIC is the slope limited centred scheme. Slope limiting methods use first-order monotone
schemes but moves beyond piecewise-constant approximations to piecewise-linear approxima-
tions for the data in a cell . It consists of 3 steps:

Step 1: Linear reconstruction: fitting a linear function through w] using information of
neighbouring slopes:

where A; is a measure of the slope, given by combination of neighbouring slopes:

1 1
Ai = 5(1+W>Ai_1/2+5(1-&))AH_1/2 , WwE [—1,1]
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. — n n — n n
where: A;_1/5 = uj —uj and A = ui | — uj.

Hence, at the cell boundary, we have z = z; — $Az (L) and = = z; + s Az (R):

1 1
ul =ul — §Ai and uf :u?+§Ai

We can perform slope limiting using the slope limiter function £(r):

1 1
al = ul — §£<T)Ai and ﬁf =u; + §§(T)Ai

Step 2: Half-time step evolution of boundary states in V' = [z, zg] X [n,n + 1/2]:

_Lnt1/2 L lﬁ SRy _ p(al
u, =u - oA (f(al’) — f(a;))

—Rn+1/2 _ —-R lﬁ alt) — T

Step 3: Compute flux with FORCE scheme and perform finite volume update:

1
SLIC ORC —_Rn+1/2 _Ln+1/2
i+L1[/2 = ff:rll/g d (ui / s Wity / ) =5 (-fiL-fl/2 + ZR+I1/2)
where | LA
_Rn+1/2 _Ln+1/2 T (_Rn+1/2  _Ln+1/2
fﬁ;p:—(f(ui /)+f(’u’i+1 /))+__<ui +/_ui+1 />
2 2 At
and

n+1/2
.fﬁ:rl/Q = f(ui:_1//2)

n 1 — n — n 1 At — n — n
+1/2 5 (uR’ +1/2 +uL, +1/2> il <f('u,R’ +1/2> - f(uL, +1/2)>

i+1/2 T i i+1 2Ar i i+1
Update according to:
At
1 SLIC SLIC
u"t = — Ar ( i+1/2 zel/z)

Flux limiting combine different flux methods of different orders and activate them at appro-
priate regions of the solution using limiter function. Slope limiting aims to better approximate
boundary states with piecewise-linear functions instead of just piecewise-constants. SLIC is
less diffusive.
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1.3 Q3

3. (a)
u—A p 0
0 u—X 1/p|=0
0 pa®  u—\

(u—N[(u—-AN?*—-a*l=0 = A=wutau—a

u—a 0 0
A= 0 U 0
0 0 u+a
The eigenvalues are real and unique, so it is hyperbolic.
(b) Ar = Ar
For A\g = u,
U p 0 (i (2
0 u 1/p vy | =u | ve
0 pa® w V3 V3
UV + P = Uy
uvg + v3/p = uvy
Pavy + uvs = uvy
Ulzk,UQI'Ug:O
1
To = 0
0
For \_ =u — a,
pue = —avy = ve = —(a/p)vy
v3/p = —ave
pPavy = —avs = V3 = —pavsy
1
r_=|—a/p
a2
For A\ =u+a,
pv2 = —avy = vy = (a/p)v1
v3/p = ave
pa2U2 = —QaV3 = Uz = pavs
1
re = | a/p
a2
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1 1 1
Q={—-a/p 0 ap
a? 0 a?
[A =M
For Ay = u
U op 0
(v1 Uy 'U3) 0 u 1/p :u(v1 Uy 'Ug)
0 pa®> wu
uvT = uvy

pU1 + UV + pa2v3 = Uy

vg/p + uvy = uvs
V] = —CL2U3,’U2 =0
loz(l 0 —1/a2)
For \_. =u—a

(vl Uy v3) 0 u 1/p :(u—a)(vl Uy Ug)

wvy = (u—a)vy = vy =0

pvy + uvy + patvs = (u — a)vy

vz/p~|—u113:(u—a)v3:>v3:—p—1av2
1
=01 —5)
For A\ =u+a
U op 0
(vl Uy 'U3) 0 u 1/p :(u+a)(v1 Uy vg)
0 pa® wu
'U1:O
pv1 + uvy + patvs = (u+ a)vy
U2/,0+UU3:<U+CL)U3:>03:ID—ICLU2
l+:(0 1 pia)
0 1 —1/pa
Q'=1|10 -1/a?
01 1/pa
()
dv_ 0 1 —1/pa dp du — dp/pa
dy | =1 0 —1/a? du | = | dp — dp/a?
dv, 0 1 1/pa dp du + dp/pa
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(d) Characteristic wavefronts: 2 =0

ov ot ovds

ot s Ox Os

=t=s and G_zc:A
ot

Along the characteristic lines, the corresponding characteristic variable is constant

d
vy = /du + £ = const along dr = (u+ a)dt
pa

d
Vo = /du ~ P _ const along dr = (u—a)dt
pa

(e) The domain of dependence (backwards) and influence (forward) of the Euler equation is
determined by the slowest and fastest characteristics and is always a bounded interval.

(f) Sod test problem: we consider a tube with membrane in the middle, with high pressure
material on the left of the membrane and low pressure material on the right of the membrane.
At t = 0, we remove the membrane and let the flow evolve. We expect to see a rightward mov-
ing shock wave, a leftward moving rarefaction wave and a contact discontinuity in between.
The contact corresponds to the location of the material interface.

(g) We can perform the update along one direction first, then use the result to update the other
direction. For example, we can update along x-direction first then y-direction. For example,
we could do a first-order update in the x-direction followed by y-direction:

Wt = LV (")

Ui j = 'U'Zj + Ax (f?—l/?,j(u) - f?—i—l/?,j(u))
n — At n — n —
ultt =+ Ny (9751 0(@) = G711 0(10))

Y
A A
At = C X min ( * , i )
Umaz,z Amaz,y

The stable time-step is halved.
(h) Operator splitting.

10
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2 2019-20 (MOCK)

21 Q1
1. (Part I)
(a) Characteristics - lines along which the characteristic variables are constant.

dv _dvde dvdt o g dw du
ds  drds " dtds M @ TYaw T
=s=t and dx = adt

The characteristics are:
T =xy+at

They are straight line in the x-t plane.

(b)

i

¢
_é'\
X; -1 x;
n* " At " 3 A
e vl o S (adirauig)
+1 n n n
ui T — U Uy — Uiy
Uy = and u, =
! At v Ax
+1
oy,
At Ax
At
+1 _
uim = - (uf —uiy) o (e>0)
(¢) The CFL coefficient, C' = A“;‘/az 7, is the ratio of maximum physical wave speed to the maximum

speed of information travel on the grid. It is used to calculate the maximum stable time step
for the simulation. For this case:

0<C<1
@ 0 O*ul At
ntl _ .n U?A u;t At A
u Ui + t+ TS + O(At?)
" . oul O*ul Ax? 5
Uiy =W — 5 Az + 2 o + O(Ax?)

11
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Modified equation:
n+l

is actually equivalent to:
2 2
ou  O*uAt ou 6uAa:+O( 12) + O(Az?) = 0

PR

E—i_ otz 2 ox

Noting that:
(O — a0y) (0 + ady)u =0

(8“ — azam)u =0

Then,
ou N ou alAz  a’At\ 0%*u
R aq— = —
ot ox 2 2 0x?
ou ou 1 9*u
bl Z  ZalAz(l — o) ——
T T Lt
It is of the form: dyu + ad,u = a0y, u. The unseen term introduces diffusion of the numerical
method.
(e) 5
ntl g T Ay
u; u; T
ou 1
= —— = — (" —
o T A T
and
uly = ul + Az
ulth =l + —augt‘lAt =ul — QuAg 4+ AL
Subtracting one from the other,
ou Ou
n n+1
ully —ul = 2Ax% — aAt

Cancelling the temporal,

" n ou
(Ui+1 - U?—Jrll) + (U?H —u) = ZAx_ax
ou 1 1
= — = n _ ,ntl n+l _ . n
ax ZA;C(UH_l UZ,1)+ QAx(ul uz)

The linear advection update scheme is then:

1 a n+l _ n
(At N 2Aa:) (i —uf) + ga

(Part II)

12
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(a) The characteristics are no longer straight lines, but are now curves.

b %
7.t

—

0 Sod S M|

(b) First-order approximation for the derivative, where forward difference is used when = > %
and backward difference is used when x < %

uptt—up 1\ Ui U 1
{n_ét +(x,;—§) nAxi_ T2 g
un um w;ly Uy
art ot (wi—g) A =0 e <y
ultt =l — (l’z - %) %(U? —uiy) T %
upth = = (- 5) ae(ul —uf) w <
(¢) CFL condition:
0<Cc<1
where .
o= T3
Az /At

13
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2.2 Q2

2. (a) Primitive variable form.

(b)

0 wu—X 1/p|=0
0 pa®  u—\
(u—N)[(u—N)?—=a*] =0
Eigenvalues:
A=u,u+a,u—a
The eigenvalues are real, so the PDE is hyperbolic.
(d) Right eigenvector: Ar = Ar.

uop 0 .
0 wu 1/p)|-]=2A
0 pa®> u
For Ay = u,
uzr + py = uzr
uy + (1/p)z = uy
pa’y +uz = uz
1
T = 0
0
For \s = u + a,

wr +py = W+ a)x
wy+ (1/p)z = Gr+a)y
paty +uz = (w+a)z

1

re=|a/p
a?
For A3 =u — a,

v+ py = (' —a)x
wy+ (1/p)z = (w—a)y
paty +uz = (u— a)z

1

rs= | —a/p
a2

14
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Left eigenvector: 1A = Al.

U oop 0
Coofo w ] =ag )

0 pa® u

For A1 = u,
ur = ur
pT + wy + paz = wy
(1/p)y +uz = uz
li=(1 0 —1/a?)

For Ao = u + a,

wr = (u+a)r

pr + wy+ patz = (w+a)y

(1/p)y + 2z = (' + a)z
L= (0 1 1/(p0))

For A3 =u — a,

wr = (u—a)x

pr 4wy + paz = (w— a)y

(1/p)y +uz = (w—a)z
Is3=(0 1 —1/(pa))

(e) Consider left rarefaction:
Characteristic: z = (u — a)t

So, using characteristic line and invariance,

— _ Z
a=1Uu i
w4 2a :uL+2aL

u—uL—|—7_1— ~—1
2u 2a x/t
u+ oy 2
Y- y—1 7-1
u+u 2a x/t
ot sy 20 /
v—1 v—1 v—1
! (( 1ur, + 2az, + )
u=—- — Du a —
Tt 1 Y L L
2 L= +x
=——/a u —
v+1 T 2 T
Then,
2 n —1 +m T
a=——1|a U - —=
O D T B
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(f) MUSCL-Hancock.

e Perform slope-limiting, going from piece-wise constant to piece-wise linear approximation.
Data reconstruction to define cell boundary values through linear extrapolation and slope
limiters.

where 1 is the slope ratio and A; = %(1+W)Ai,1/2+(1—w)Ai+1/2 with A;_1/2 = uf —u]
and Ai+1/2 = ’U;;L_i_l — ’U;Zn

e Perform half-time step update of the boundary reconstructed variable.

abn e —at - S (gl - gl

T oA 7

’ ©O2Ax
_ ,n+1/2:_R_1ﬁ ZRY =L
a all - S (f(al) - f(ah))
e Then, use the resulting states in the HLLC solver (approximate solver) to obtain the
fluxes and the update.

At the i + 1/2 interface,

_Rn+1/2
)

Lnt1/2
up, =1u n+l/

and wp = u;,

™t = = SRS — )
where,
,0< 5,
SL(ugLLC — uL) ,SL <0< 5"
SR(ugLLC — UR) ,S* <0< Sg
,0 > Sk

Could also use exact Riemann solvers like Godunov method:

_Rnt1/2 _Ln+1/2
up = a "M and wg =altY

A
U?H =u; — A_;(f(ui-&-l/Z) - f('u'i—l/Q))

U;41/2 is found through an exact Riemann solver using the half time-step updated
boundary states as the left and right states.

e TVD is ensured through the use of limiters.

(g) HLLC is more diffusive, while MUSCL-Hancock gives steeper waves.
The limiter makes the scheme TVD and gets rid of 2nd order oscillations.

(h) Most diffusive to least diffusive: Minbee, Vanleer, Superbee.

16
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2.3 Q3
3. (a)
.5

5, b SQ“
1 R e
f ! f
¥ ‘ s
§ ’ 4
i i b i
[ i :
: Ve hdoiis
X, 57 o SRS

(b) A 3-wave diagram includes a contact discontinuity. We can have RCR, RCS, SCR, SCS. 4
combinations of waves.

© oUu OF(U)
EjL ox

(d) Integrate with respect to x and t in the control volume,

//aU“dtd:c / /aF @) gy dw — 0

/ U(z,T)—-U(x,0) dw—l—/ F(U (zg,t)) — F(U(xp,t))dt =0

L

=0

TR

U(x,T)dx = / U(z,0)de —T[F(Ug)— F(Up)]

TR

U(x,T)dr =2gUpr — 2 UL +T[F(UyL) — F(Ug))]

TL

Note that the integrands at assumed piece-wise constant in space and time:
T TR
/ F(U(C(]R,t))dt:TF(UR) and / U(CL’,O) d!E:JIRUR—ZL'LUL
0 T

(e) Three regions are [z, s.T], [spT, sgT] and [sgT, zg].

TR ST SRT TR
/ U(z,T)dx = U(z,T)dx + U(z,T)dx + U(z,T)dx
zr TL ST SrT
SpT
:SLTUL—I'LUL+ U(ZE,T)dJZ+[ERUR—SRTUR
ST
Then,
SgrT
2pUp—1U 4+ T[S U —SrU R+ U(z,T)dr = sgUp—77U +T[F(UL)—F(Ug))]
ST

17
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1 SrT

— U(JZ,T)d{E:FL—FR—SLUL+SRUR

T Js,r

1 SrT SgUr — S U, + F,— Fp

U(z,T)dx =

T(Sr—SL) Js, Sr— St

(f) Consider the control volume: [T'Sy,0] x [0, T7:

// 8Uxtddt // OF (U xt)ddt_o
ST ST

/ Ul(z,T) - Ulz,0) dx+/ F(U(0,t)) — F(U(TSy,t))dt =0
ST

0
U(JI,T) + SLTUL —|—TF0L - TFL =0
TSI

1 0
FOL:FL_SLUL__ U(LE,T)dZC
T Jrs,
(g) We are deriving the HLL scheme.

(h) HLL does not include contact discontinuity but HLLC does.

Vo act
B i e

¥y e

(i) Slope limiting: going from piece-wise constant to piece-wise linear approximation.
e Boundary values obtained via extrapolation and limiters.
e Perform half timestep evolution.
e Use the resulting states in the HLLC solver to obtain a solution.

Limiters ensure TVD.

18
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3 2019-20 (EXAM)

3.1 Q1
1. (Part I)
“ =+ 9u py Fu At + O(At?)
A A

0 0?u Az?
ul = uy + a—Ax 8—;% + O(Az?)

" du 0*u Ax?
ul | =ul — 8_xAx FERCN + O(Az?)

(b) Keep terms up to first order in Az and At,

u +au, =0

U?Jrl B U? a n n
At +2A:C(ui+1_ui—1) =0
Ui+1 =Uup = E(Uiﬂ —u )

1
U?H = 5(“?—1 + U?H) - §C<u?+1 —u; )

1 n 1 n
= 5(1 + C)Ui—1 + 5(1 - C)ui+1

where ¢ = ‘Z—A; is the Courant number. It is the Lax-Fridrich scheme.

(c¢) Lax-Friedrichs is first-order while Lax-Wendroff and Warming-Beam is second-order.

(d) For smooth profile, LF is diffusive and LW is dispersive. For sharp discontinuity, LW gives
oscillations around the discontinuity, but LF smears the discontinuity.

(Part II)
(a)

t=1

19
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(b) i u(0,t) and u(z,?) are along the characteristic line so they are constants. (Solution is
constant along characteristic line)

x
u(0,t) = ug = constant and wu (x, —) = u; = constant
a
ii.

The integral over region A is given by the following:

At at alAt At
/ / dr dt or / / dt dx
0 0 0 z/a
At at
(9f
— dt dx
[ G | /

[ e 80) st gy e [ patar ) 0.0 =0

0

Hence,

=0

At

alAt
/0 we, A —urde+ [ fu) — flug) = 0

0

alAt
flug) — fluy) = Ait/ u(z, At) — uy dx
0

(c) Monotonicity preserving: if {ul'} is monotone increasing so is {u"'} and if {u}} is monotone

decreasing so is {u/"'}.

If initial conditions are monotone increasing ug > uy, then the solution is monotone increasing
for all time, vice versa.

(d) Monotone increasing: u; > u(z,t) Vo < at. This means, f(ug) — f(u1) < 0.
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3.2 Q2

2. (Part 1)

(a) Eigenvalues:

1-X 4
’ 4 1—)\'_0
(1-X)?*=16
A=5,-3
Right eigenvectors: Ar = Ar,
1 4\ (a (¢
4 1)\b) b
a+4b = la
da+b=M\b
FOI'/\1:5,
11
T —2 1
FOI'/\lz—v?),
1 1
Tg——2 _1
(b)
5 0
A= 0 —3)
IR S T U S
=5l )-e
Verify:

The columns of Q are the right eigenvectors and the rows of Q7 are the left eigenvectors.
v R AT! sinz) 1 (sinz+cosx) _ (sin(x+ 7]
°7 2\l —1)\cosz) 2 \sinz—cosz)  \sin r—Z
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W, + AW, =0
Wt + QAQTWx =0
Matrix Q is orthogonal i.e. Q7@ = 1, meaning its transpose and inverse are the same.

Q"W,+AQ"W, =0

QW) +AMQ"W), =0

v+ Av, =0

Decoupled:

ovq ov

S5+ =0

vi(z,0) =sin(z + %)
and

ov Ovy __

G -3z =

va(2,0) = sin(z — %)
(Part II)

(a) The system is in the form:

Integrating over control volume to include weak solution,

r+1/2 At At :E+1/2
/ Utdtder// F(U), dudt = 0
x 0 0 x

At

—-1/2 -1/2

/“”ZHLAQ_U@ﬁym+ F(U(z+1/2,t) = F(U(z — 1/2,t)dt = 0

—1/2 0

obtain the integral average and let = — 1/2 be Ti—1/2, T+ 1/2 be Tiy1/2 and At be il

n . At
'U’z‘H =u; — A_x<fi+1/2 - fi71/2)

(b) A Riemann problem is an initial value problem, consisting of a conservation equation and a
piece-wise constant initial state with a single discontinuity at z = x.

<
up + f(u)y =0 ,umm={” =

Ur ,T 2 T

A non-trivial exact solution can be found, so it acts as excellent test cases for numerical
methods.
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(¢) HLLC consists of three sharp waves including a contact discontinuity.

e o R S, o

Se At S* S
/

R
o
‘i:/- |
/ / |
/ u’\ ;

tir.
. > 3¢
%7 Liatra Xéas
wr = (pr,vr,p) , wi = (pr,v",p")
w;% = (p*Ra U*ap*) ) Wpr = (pRavRapR)
(d) FORCE scheme.
1
ffflP/{SE = §(ff‘{+[1/2 + szfl/2)
(e) In 2D
P P2Ux Py
PUy + puy +p P%yum 0
Puy Plgty puy +p

pE), \(pE+pu.) \(pE+pu,
(f) Unsplit method - accounts for all flux contributions in a single time step:

v . A At

Ui = U5 — E(ﬁiyzg - fin—l/2,j) - A_y(93j+1/2 - ng—1/2)

Stability test reveal that:
C,+C, <1

where C, and C, are Courant numbers in the x and y directions. We run into CFL halving
problems where the stability range is at least halved compared to 1D.

Dimensional splitting - update each direction separately. For example, we can update the
x-direction first then the y-direction.

'U,:;rl — y(At)X(At)uZ]

(first-order)

Get intermediate state after applying operator X (49:

— n At n n
Wjj = Uy 5 — A_:c( i+1/2,5 fi—1/2,j)

Then apply operator Y(*" on the intermediate state:

n v At n n
Uzjl = U ; — E(gi,j—i-lﬂ - gi,j—1/2)
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Second-order accurate dimensional splitting can be obtained using Strang splitting.

We compute the stable time step by taking into account the maximum wave speeds in both

directions: A A
At = C'min ( * , i )

Omaz,z Amaz,y

(g) Reflective boundary conditions has to be used for all boundaries. For N cells in each direction,
HLLC uses 1 ghost cell at each boundary (0 and N+1). Reflective boundary is set as

uy[0] = —uy[1] and  uy[0] = —uy[1]

ug [N + 1] = —u,[N] and  wu,[N + 1] = —u,[N]
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3.3 Q3

3. (a) For smooth function u = u(z):

TV (u) = /OO |u(z)| dx

o0

For discrete function u™ = {u!'}:

TV(@") = Y lufy, —uf|

1=—00

(b) The absolute gradient is 4 throughout the domain. Hence, TV (u) = 20 OR use maxima and
minima, TV(u) = |4 — 5| +[5— 0]+ |0 — 5| + |5 — 0] + |0 — 4| = 20.

(c) For (a), the total variation of approximate solution is less than the exact solution. For (b),
the total variation of approximate solution is more than the exact solution.

(d) A scheme is TVD if:
TV (u"™) < TV (u") ¥n

(e) Flux limiting: non-linear combination of fluxes from high-order numerical method and first-
order monotone method to obtain a high resolution TVD method, which is higher-order
everywhere except near discontinuities where it reverts to the first-order method.

it1/2 = fzﬁ—ol/Q + Giy1/2 (fﬁgm - fzﬁ-ol/Q)
where ¢;11/2 is the limiter function.

(f) FLIC. Uses FORCE (first-order) as f£¢ and Richtmyer (second-order) as the f#1. It is TVD
through the use of limiter function.

(g) Superbee is more compressive than Minbee. Superbee resolves discontinuities better than
Minbee, while Minbee allows for more diffusion. However, Superbee might result in squaring
of smooth features (suffer small oscillations).

swReshee

AN, 2 @

-

2

(h) MUSCL-Hancock: slope limiting (linear reconstruction of boundary values + half-time step
update) with Riemann solution (exact or approximate).
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Conservative MUSCL-Hancock:

e Use the form:
U +FU),=0

e 3 steps: data reconstruction, half-time step update and Riemann solution.

i. Data reconstruction:

af =l = €A and afl =uf + SE(r)A,;

where £ is the slope limiter and A; = %(1 +w)A 1/ + %(1 — W) A2
ii. Half time-step update:

Lin+1/2

uZ

w2 g L2 (p(al) - pal)

iii. Put the updated states in exact or approximate Riemann solver.
Primitive MUSCL-Hancock:

e Use the form:

e 3 steps: data reconstruction, half-time step update and Riemann solution.

i. Data reconstruction:

1 1
wh = w? — 55(?")& and W/ =w! + 55(7“)Ai

7 7

where £ is the slope limiter and A; = %(1 +w)A_1/ + %(1 — w) A1)
ii. Half time-step update:

’ 2 Ax
1 At _
e L §A_A<'wz>A
T
where %—Z’ = %

iii. Put the updated states in exact or approximate Riemann solver.

n

U?ﬂl - U?H = [U?H — Cip12AUi11/2 + Di+3/2Auz’+3/2} - [ul — Ci_12AuUi_1)9 + D¢+1/2AU2‘+1/2}
= (uiyy — uf) = Ciprpp(uiy — ') + Digspa(uis — uiyy)
+ Ci1pp(uf —uiy) = Digapp(uiy — uy)
= (1= Cisryz = Digay2)(uiy — ') + Ciapa(ui’ — wi' ) + Divgpa(uiy — ufyy)

Taking absolute value gives the required expression.
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ii. It becomes:

luftt — ) <y, — ul| + Cicypolu —ui (| = Coprpolud, — uf
+ Diyspo|uiys — iy | — Dipyol|uiy — uf|

iii. Summing over i on the LHS will give us TV (u"*!)

TV (™) <Y fufy —uf |+ Cimapluf = uf 4| =Y Cipapolullyy — uf

+ Z Diyspoluily —uiq| — Z Dii1plulyy — uf|
i i

Replacing i with j+1 on selected terms allow us to spot cancellations of summation:

Hence,
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4 2020-21 (EXAM)

4.1 Q1
1. Same question as 2023-24 (Mock) Q1. Link

4.2 Q2

2. Same question as 2022-23 (Mock) Q2. Link

4.3 Q3

3. (a) 1D conservation law for Q:

Q. +F(Q).=0

[0,T7,
/xj/OTQtdtdx+/OT/Ejf(Q)xdxdt:0

/ Q. T) — Q(x.0)dx + / F(QU0,1)) — F(Q(as,t)) dt =0

Integrating over [z, 0] X

/3: Q(x,T)dx = /: Q(x,0) dr + /OTf(Q(xL,t)) dt — /OTf(Q(()’t)) dt

r" RATYAX
; P <
. i j B
i ;Lt T =St
~
,’Q(o,zcvxlléf
I o
 § S K 2
I;(@(L,t//lc ! &
= i
: |
! o : > 7 &
) o
¥ s ®
= SLY/ =5l
o
/ 0_10(:“)4)(
L9 i

0
| QuT)dz=(0-2)Q, + (T~ 0)£(@y) - (T - OF,
Dividing throughout by T,
0
Fo= 7@+ £@) -7 [ Qs
1 0
—-51Q,+ £Q)) - 7 [ QT
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(c) Using right state:

/OIR Q(a:,T)dx:/OxRQ(x,O)dx—i—/OTf(Q(O,t))dt—/OTf(Q(xR,t))dt

TF, - / Qe T dx + THQp) — 25Qn
0

Fo= —SiQn+ £(Qn) + / Q(x.T)d

Hence, equating both expressions for F,

—SLQL+fQL——/Qde:c—SRQR+fQR /QxT

7 / Qe D)do+ /0 Qe Ty dr = ~S1Q; + 5xQp + F(@1) — F(Qp)

TR
| QT de =T (5:Qy - 51Qu + £(Qu) - (@)
(d) HLL assume intermediate state is constant.

(zr —2)Q" =T [SrQr — 5.Q, + F(QL) — £(QR)]

QUL — SrQr—51Q; + f(Qr) — f(QR)
Sp—SL

(e) FHLL is not the same as f(QT*") because HLL flux is obtained by using the jump condition
across the sharp waves i.e.

FIY— fro = Sx(Q"" — Qg) where K €L, R

(f) Full HLL flux at cell interface is:

‘f(QL) 7O§SL
fgj%Z: fHLL ,SL<O<SR
f(QR) 7SR§O

(g) HLLC includes a third sharp wave which is the contact discontinuity, and it has two inter-
mediate states.

(h) The HLL state Q"L is now made up of two intermediate states separated by the contact
discontinuity. We have,

TR

TR ST
/ Qu.T)dr= [ Qu@.T)de+ | Qule.T)ds

rL ST

(SRT — S.T)Q" ™ = (S, T — S;.1)Q,; + (SrT — S.T)Q.
S, — S Sr— S
HLL _ * L R *

where S, is the speed of the contact discontinuity and the star states are the solutions to the
left and right of the contact discontinuity.
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(i) Rankine-Hugoniot conditions:
fi1=F,=5(@Q - Q)

For Euler equations:

p pu
Q= |pu| and f=|[ pu®>+p
E (E+p)u

Using the RH conditions for conservation of mass and momentum at the left and right sharp
wave to obtain 4 equations:

PLUL — PxLSx = SL(PL - P*L)

prui + pr — perS? — pe = Sp(prur — perSy)
p«rSx — prUR = SR(P+r — PR)

P+rSE + Ds — PrUR — PR = Sr(P«rS% — PRUR)

I want to remove p,.
_ 2 2 2 o2 2 2
ps = pruy, +pr — prS; — SL(pr — psr) = Sg(psr — pPr) — P«rST + pRUR + PR

prui +pr — pr(S: — S7) — Sipr = pruy, + pr — pur(S2 — SE) — Skor (1)
I also want to remove p,; and p.g,

prur, — Stpr

P*L(S* - SL) =prur — SLpL = pPuL = S.— 5,

p«r(S« — Sgr) = prUR — SrPr =  pPsr =
Substituting into equation (1),
pruy +pr — (prur — Sppr)(Se +S1) = Sipr = pruf + pr — (prur — Srpr)(S. + Sr) = Skpr
Make S, the subject,

S.lpr(ur—Sr)—pr(u—SL)] = pruk+pr—SiPr—prul—pr+SipL—pr(ur—5S&)Sr+pL(uL—5S7) St

_ Pr—DPL + prur(Sr, —ur) — prur(Sr — ug)
pr(ur — Sr) — pr(ur — St)

g _ PrR—PL + prup(Sp —ur) — prur(Sk — ug)

’ pr(Sy —ur) — pr(Sr — ug)

S,

(j) Initially, equation (2) has 3 equations for 4 unknowns {p.r, p«r, S, p«}. After obtaining an
expression for S, in terms of known left and right states, we have 3 equations and 3 unknowns
{p«L, P«r, P«} S0 we can solve the equations.
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5 2022-23 (MOCK)

51 Q1
1. Same question as 2023-24 (Mock) Q1. Link

5.2 Q2

2. (a)
(b)

The numerical solution suffer from oscillations near discontinuities. It is also dispersive.

Flux limiting can be used to give us a high-resolution total variation diminishing (TVD)
method, through using a non-linear combination of a high-order scheme and a low-order
monotone scheme. Higher-order methods are used everywhere except near discontinuities,
where first-order method is switched on.

fz‘TJr‘/l?Q = fiL-?l/Q + ¢i+1/2(fg-11/2 - fz‘L+O1/2)
where ¢;y1/2 = ¢iq1/2(r) is the limiter and r is the slope ratio.
We can fit a linear function through u}":

where A; is a measure of slope, given by the combination of neighbouring slopes:
1 1
A= §(Az’71/2 + Ai+1/2) - §w(Ai+l/2 - Azel/Q) , W € [—1, 1]

where Ajy12 = ufy, —ui and Aj_yp = u

i —u . Then, the left and right boundary
states are given by:

1 1
L n R n
u:’ =u: ——(si , u:'t =u: —|——4Si
! 2 ! 2

Use r and 1/r: consider the behaviour for two values of slope ratio reciprocal of each other:

Bit1y2 = & and r = &
A1 AL Ay

P =

For Minbee and Superbee, they will introduce antisymmetric behaviour due to the r and 2r.

For Van-Leer,

1+r’ 147 1+7 147

() — mi 2N 2A () = mi 2N, 2N
DEMIATTA A 1A ) 0 SYUTTIIATTATA T AL

§(r):min(2r 2) | §<f):mm<2f 2>

Hence, symmetric.
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For Van-Albada,

£(r) — min (r(l +r) 2 )

R o (r(l+7 2
1+72 " 1+7r ’ f(r):mm(( : )

1+72 7 1+7

£(r) = min A(AL+A) 27, £(7) = min AN +AD) 2A
AL +A2 TALHA) T A2 + A2 AL+ A

Hence, Van-Albada will introduce antisymmetric behaviour.

(e) MUSCL-Hancock method

1. Slope limiting is performed on linearly reconstructed slopes:

—L n 1 —R n 1

u; =u; — §£(T)Ai and ;' =u] + Ef(r)Ai
where £(r) is a function of slope ratio.

2. Half-time step update of boundary states:

_Ln+1/2 _ oL lﬁ ) — (gL
1 At R

—_Rn+1/2 _R _ _I
u.: -u't - —— u:’t) — u:
(2 1 2 Ax (-f( 1 ) -f( 1 ))
3. We then use these updated boundary states in a Riemann solver, either exact or approxi-
mate, by noting that at the cell boundary z;,,/2 we have:

_ —_Rn+1/2
i

_Ln+1/2
up =4 /

and wp = U,

(f) Dimensional splitting

(g) Performing a single operation has a CFL number halved of the underlying numerical scheme.
Also, it is not easy to implement an unsplit numerical scheme which takes into account of
waves moving diagonally.

(h) Strang splitting:

ntl

1
u%] 5 [yAtXAt 4 XAtyAt:I (un)

n+l _ pIAtyAt pEAL 0
wpl = XY (u")

nt2 _

iy % [yAtxAtxAtyAt] (un)
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5.3 Q3

3. (a) 1D conservation law
hQ +0.f(Q) =

Integrate both sides within control volume = [z, 0] x [0, T7:

[ [ i [ [ 2@ o

/xj Q(x,T)dx — /“ Q(x,0)dz +/0 £(Q(0,1)) — /OTf(Q(ﬁL,t))
/xo Q(z,T)dx = /0 Q(z,0)dx — /T f(Q(O,t))+/T F(Q(zr,1))
L . 0 y ;

TF, = [ Qu.0)ds+ T£Q) - | QT
0
— (0 S,T)Q, + TF(Q,) - / Q(e.T)ds

1 0
Fo=-5:Q,+ £(Q) - 1 [ QT)ds

/OIR /OT @a_?dtdx T /OT /OIR %dmt —0
/OIR Q(z,T)dx — /;R Q(z,0)dx + /OT Ff(Q(zg,t) — /OTf(Q(O,t)) _
e —

Fo = —SxQp + F(Qp) + / Qe T)d

(c) Using right state:

Equating:

1 0 TR
T ( / QT + Q<x7T>dx) = ~51Qu + F(Qu) + 53Qn — £(Qu)

/IR Q(z,T)dr =T (SrRQr — Sc.Qr + F(QL) — f(Qr))

(d) HLL assume intermediate state is constant.

a(z,T) = Q"™ TS, <z <TSg
QR ,x>TSR
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(TSkr —TSL)Q™ =T (SpRQr — S.Q; + £(Q;) — F(QR))

QI — SrRQr — 51QL + f(Q) — f(Qp)
Sp— S

(e) HLL flux is obtained by using the jump condition across shock wave. f745 £ f(QHLE)

(f)

fL 70§SL
FEL =™ S <0< Sn
fR aOZSR

(g) HLLC is a 3-wave approximate Riemann solver, including the contact discontinuity.
(h) S* is the speed of the contact discontinuity. Q,; and Q. are the solution to the left and
right of the contact.

Refer to 2020-21 (Exam) Q3 Link
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6 2022-23 (EXAM)

6.1 Q1
1. Same question as 2023-24 (Mock) Q2. Link

6.2 Q2

2. (a) Integral average for state vector:
1 xﬁ-%A:C

u' = — w(x, t") dr
g e

(b) Integral average for flux:

. 1 tn+1
fi+1/2 ~ AL Fu(zipry2,t))dt
tn
(c) ) . .
ultt —ul N Fivipe = Fivae _0
At Ax

As Az, At — 0, we recover the conservation law, u; + f(u), = 0. When solving the equation
with a numerical method, we assume piece-wise constant data within the numerical stencil
[z, — 1Az, z; + SAz] x [t", ¢
e The quantities defined in the previous two questions assume that the solution is known
everywhere in the cell at ", and the fluxes are known at both boundaries for the full
time step.
e In practice, these fluxes cannot be known at the intermediate times between " and " !,
and thus they must be a numerical approximation.

(d) A Riemann problem is an initial value problem consisting of a conservation equation and
two piece-wise constant initial state separated by a single discontinuity at x = xy (draw it).
A non-trivial exact solution can be found, acting as excellent validation tests for numerical
methods.

(e) Godunov’s method:

e Godunov’s method assumes the integral averages in each cell u] is piece-wise constant.

piecewise constant
distribution

data

i—2 i—1 i i+l i+2 x
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e This sets up a Riemann problem at x;,;/, between neighbouring cells, u;' and uj}, ;.

e The Riemann problem is self-similar so the solution at x;,/, is constant for ¢ > ¢".

n
Wit1/2:

Solving the Riemann problems at every cell boundary gives us the state at each interface

e We obtain the interfacial flux by: i, = f(uf,, ).

e Likewise for cells x; and x;_; to obtain f}', .

(f)

) U
Burger’s equation:

du 9 (1,
E+%(§U>—O

(g) When looking at Riemann problems, think about characteristic variable which is u, and A = u.

There are 5 possible solutions to the Riemann problem at x;1 /2 between u; and ;4.

Shock wave form for A(u;) > S > A(u;y1), that is, uf > uf,,. Rankine-Hugoniot condition

gives the shock speed as:

Rarefaction wave forms when A(u;) < A(u;41), that is, v < u?, ;. It is bounded by lines with

1
slope = and e

1

in the x-t diagram, and taking all values in between. For the case where

k2
rarefaction covers z;;1/2, u = 0 is a characteristic along x = constant.

Solving for the interfacial state gives:

uy U > Uty

Uiy U7 > U

U?ﬂ/g =qu sup < uglg
0 s up < gy

\U?H U < Uy

Y

bl

Y

?

Y

S>0
S <0
u; >0
ui <0< u,
uilyy; <0

(h) To get unique Riemann problem solution: entropy condition. The entropy condition dis-
tinguishes between weak solutions and pick the one that is physically correct. It rejects
expansion shock as a physical solution, as it is entropy-violating, while admitting rarefaction

waves.

)\(UZ) > 9 > A(ui—i-l)

36



MPhil Scientific Computing 6 2022-23 (EXAM) Compressible Fluid Dynamics Past Papers

(i) Riemann problem with diverging characteristics gives 2 weak solutions: a rarefaction fan and
a rarefaction shock. Which one is physically correct i.e stable under perturbation?

03
02
01
0
0 02 04 06 08
x

e Consider a perturbation of a Riemann problem solution, with three initial states:

E

ur T <2
w(x) =< uy ,rp <z <ITR

ur ,T > TR

with interval Ax = xgr — x.

e [f we assume the solution is a rarefaction fan, the characteristic diagram is unchanged
and we recover the rarefaction wave. However, if we assume the solution is a rarefaction
shock, we obtain two distinct waves, even in the limit Ax — 0. The rarefaction shock
solution is unstable.

1 1
Sl = é(uL +’LLM> and SQ = é(uM ‘|‘UR)

e Hence, for consistent solutions under perturbation of initial data, we only permit the
rarefaction wave.

(j) CFL condition gives the maximum stable timestep:

_ CAz

amax

At

where C is the Courant number dependent on the numerical method and a,,,, is the maximum
physical wave speed in the domain,

gz = mlax(|ul|)

The CFL condition asserts that the numerical waves should propagate at least as
fast as the physical wave. This means that the numerical wave speed of Ax/At must be
at least as fast as the physical wave speed.

Ax > | |
amax
At
This inequality is usually enforced by choosing a Courant number C' = %ﬁf"' and 0 < C' < 1.
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(k) Why is conservation form important? (Burger’s equation)

ou 0 (1 ,\ ou ou
E—F%(ﬁu)—o or —t—i-u——O

Consider discretising both of the equations using backwards difference:

At |1 1
C tive form: w™ = u — 20 [ 2 ()2 — = (u )2
onservative form: u] U R [2<Uz) 2(%71)
At
Primitive form: u/™ = u} — s [(u!)? — wful ]

Summing over the domain where i € [1, M],

For conservative form:
M

M ;M
;U?H :Zuf—ﬂz

i=1 i=1

The total change of u depends only on the contribution from the boundaries, and this al-
ways holds in the presence of a discontinuity. So, the discontinuity will be correctly positioned.

FOI' non-conservative fOI'Hl:
M M
At
n+l __ n n\2 n.n
E U@ = E U, T Ar E [(Uz) _uiui—l}
=1 =1 =1

The terms only cancel in the limit Ax — 0 where we hope to have u] = u! ;. However, if

we have a discontinuity between i and ¢ + 1, the terms will not cancel even in the limit of

Az — 0,
At

Az

n

uptt Uﬁll = Uy +uyy — [(U?H) - u?+1u12 + (uf)? —uful ]
—_—— —

never cancel
This results in a gain or loss of u when it updates, meaning the discontinuity is guaranteed

to be incorrectly placed. Non-conservative methods can be guaranteed to get the
position of a discontinuity wrong. Conservative form are shock capturing methods.

6.3 Q3

3. Same question as 2023-24 (Mock) Q3. Link
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7 2023-24 (MOCK)

7.1 Q1
1. (Part I)
(a)
Oyw + 0, f(w) =0 = dyw + Oy f(w)Dw
The eigenvalue is
=2 w250
w

If w > 0, the eigenvalue is real so the PDE is hyperbolic. If w < 0, the eigenvalue is imaginary,
so the PDE is elliptic.

(b) The characteristic variable is w.

(¢) RH condition is: f(wg) — f(wr) = S(wg — wy), with f(w) = 2w??

2 2
gw?zﬂ — 3V wy? = S(wp — wy)

v

>0
3 WR — Wy,

(d) Entropy condition: A(wg) > S > A(wg) for shock formation. A(wy) < A(wg) for rarefaction.
The head and tail of the rarefaction fan are given by A(wy) and A(wg). Within the fan, A(w)
take any values. A(w) > 0, so only right-moving waves.

W AN Q\’ Q)
= NS
Vi Ud?\ Shoy e > Ry Tote S ackTon

S>>0

n (Jg/.

<
~ /s
/‘//2
2 x

(e) Primitive variable form:
2
O (u®) + 0, (5“3) =0

2udpu + 2u0,u = 0
Oyu + ud,u =0
(f) They can be written in the same primitive variable (non-conservative) form.

(g) Same Riemann problem solution of right- moving shock and rarefaction wave. The shock
speeds are different, for burger’s equation, S = (uL + ag). Rarefaction head and tail

remains unchanged in u and @ [Burger’s: A(d) = @, equation (1): M(w) = v/w but AM(u) = u]
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(h) If you write things in primitive form, you lose sight of the flux function, and you could be
solving either equation (1) or Burger’s equation (or a whole family of equations). If a discon-
tinuity is obtained, then identifying which equation caused it requires knowledge of the jump
conditions (RH conditions uses flux information).

Smooth solutions (rarefactions) are unchanged in either form. The shock speed becomes
unclear in non-conservative form, whereas the conservation law form makes it very clear the
corresponding shock speed.
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7.2 Q2
2. (a)
o, ou_,
ot " “or
UTH_I —U? a n n n n
ZT - T Ar (Br(uf —ufly) + Bolufyy — ull))

ultt =l — O(ul (B — Bo) — Pruly + Bauiy 1)
1 1
ult = (1 - CHul + §C<1 +C)ugy — §C(1 — C)uiyy
(b) Lax-Wendroff method.

(¢) CFL number. This number is directly related to the stability of the numerical method. It

informs of a stable time-step given a certain Az. For Lax-Wendroff, |C'| < 1 for the error to
not increase with every time-step.

(d)

1 1
W =yt~ Ol 50(1 +Cul | — 5C’(l - C)ui'

— 'U/Z- - 502/&1 - §O2U1 + §Cui71 + 502'&@'71 - §Oui+1 + §C2ui+1
At (1 1 1 1 1 1 1 1

=u; — s (ﬁaC’u? + §aC’u? + §au? — éau? — §au?_1 — §aCu’f_1 + Qau?’ﬂ — §a0u?+1>
At (1 1 1 1

=ul — o (5 lau? , + aul] — 3 lau? | + aul'] — 5@0 [uly, —ul] + iaC(u? - u?_l))

=u; — Ar é(aui-&-l + auy') — E(UZ‘H —ui)| — 5(6“% +au ;) — AL (ui — ug ;)

a’At "
Ujpp — U

A Uit — )

(e) Since u™ and N/*'! satisfy the numerical method, then ™! will satisfy the numerical
method too.

(f)

1 n n
Jivi2 = é(aui+1 + au}') —

1 . 1 .
En(t+ At) = B, (t) — C?E,,(t) + 7O+ C) By (t)e~hmAe _ 5(J(l — O)E,, (t)ehmAe

AR — E,.(t+ At)
Epn(t)
1 . 1 .
=1-C*+ 5001+ C)e hmar — 5O - C)eltmae
1 . . 1 . ,
— (1 . CZ) . 50 (ezkmAz o efzkmAz) + 502 (ezkmAz + efzkmAx)

(1 —C?) + C? cos(kp,Az) — iC sin(k,, Ax)
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(8)
|IAE|? = [C?(cos(kymAx) — 1) + 1]* + C?sin®(k,,Ax) < 1

1+ C*(cos(kAr) — 1)% + 2C%*(cos(knAz) — 1) + C? sin?(k,,Az) < 1
C?(cos(kpAz) — 1)* + 2(cos(k,Ax) — 1) + sin?(k,, Az) < 0
C?(cos(kpAz) — 1)* 4 2(cos(kpAx) — 1) + 1 — cos? (k, Az) < 0
C?(cos(kpAz) — 1)* — (cos(knAz) — 1) <0
(C* = 1)(cos(knAx) — 1) <0
C*—1<0
C* <1
Cl<1

Von Neumann Stability Analysis

u;“Ll — Nin+1 4 E;L+1
——
numerical error
solution term

Since the numerical solution satisfies the update formula, the error term must satisfy too.

We assume discrete Fourier series exists for e:

M
e(x,t) = Z E,(t)e**  where k,, =

m=—M

2mm

L

Note, in a discrete domain with 2M + 1 points, there are a finite number of frequencies
possible, m € [—M, M]. Substitute the Fourier expansion for ¢ into the update formula:

el = Bt + At)e™ | @ = Epu(t)e* €y, = Bp(t)etnotan)

,m

Then, we define the change in error over a time step:

E
AE, — Em(t+ A1)
En(t)
where it may be complex. For stability,
IAE|* <1
This will give us the CFL condition:
_ | Gmax|
Ax /At
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We can also define the total error:

tot
B =

T

n=1

We can minimise the total error by ensuring T is as small as possible meaning we want to
take the fewest time steps possible. We want C to be as large as possible.

E,.(t"—1)

En(t")
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7.3 Q3
3. (a) Conservative form:
o P\ o 1
i Gl R pv?+p | =0
E T \[E + plv

Expand the conservative form and deduce the matrix B to get the primitive form:

0
9 (P vop o [P
— 1 —_— =
6)t1)+()v2//)6$v0
D 0 pc; v
B
(b) A is the Jacobian.
afi
Ay =
T Ou;

()

1
p=(y—1)pe and FE =pe+ 5/)1}2

8f1/0u1 8f1/6u2 8f1/8u3

Aij = | 0fa)Ous Ofa)Ouy O fa/Ous
Ofs/0ur Ofs/Ouy O fs/Ouy
0 1 0
_ _(p;;)Q +1(y—1) <ppg>2 20 — (v — 1)v v—1
S DS O E (=D =35 e (-1
0 1 0
_ _02_‘_%(7_1)@2 3V — v y—1
SO =DER ) SHO=DE -3
0 1 0
= | iy -3p? 3=y v-1
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(d) A and B are similar matrices. They are related by A = C~'BC or B = CACL.

ow ow
B _—
ot ot 0

ow Ou B@w ou

ou ot * du Ox -
681; o 1302_‘; — ,where Cj; = Z_ZJJZ
(e) dp  9(pv)
ot or 7Y
a(;tv) . a(mg; P _,
n oo

with E = pe + 1pv?.

Olpe) , 10(pv?)  Blpev)  10(pv*)  O(wp) _
ot 2 Ot ox 2 Ox or

Oe 0, 10(pv?) 8% 86 19(pv?) d(vp)
pat/£28t te +2827+8:13_0

Oe op d(vp)
paterv (%erv vjﬁ+pv +v o v@x>+ o7 =0

3 de 1 ( v 50 v—p—i— 5’p+v (9(pv)) +(9(vp) 0

Por TP T3 p“%“”’a_x_ o Vot 0x ox
Oz de 1 ov  Op v ) p d(vp)
pa + PU% + 5 (U {pa +v—+ e v o + %] 27}%) + or 0

(f) Density:

ap ov dp
E—I—p%—i—v% 0
Momentum: 5 5 5 p 5
ov. . oP ov | 29P  OP
Pt T TP T g T
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UL
Por " or " or
ov Ov 1 (0pdp 0Opde\
8t+08x+p(8p8x+8eax) =0
Energy:
Oe Oe  pov

o or T pox

So, in primitive form:

v 0
9 5 + | L2 5 op | O 5
ot € pgp B pga Oz €
o
(8)
v—A  p 0
) 0
b3 VA e |=0
0 % v—A
op v—AJp
- a2 29 — ] =0
© )((U ) p23€) ( p ap)
)\0:?]
(v_)\)2_£@_@
p>0s  Op
(v—A)?=¢
v— = ¢,
A=v=Ec

Eigenvalues: A\ = v — ¢, v,v + ;.
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8 2023-24 (EXAM)

8.1 Q1
1. Same question as 2024-25 (Mock) Q1. Link

8.2 Q2
2. (a)
E + !
= pe+5pv
(b) Standard sound speed derivation:
2 =
s 8p s
Using p = p(e(p, 5), ),
Oe Oe
dp = = —
P ple delp \ Opls dslp 0p
Now, let’s keep s constant,
_Op Oe Oe L op
 Oelp 8p 0ple
Then, one can easily see,
op| _9dp| 9=  Op
8ps_85p8ps (9,05
We use T'ds = de + pdv to find g—;‘s,
de + pdv =0
B _% 85
P="51, 8p
Oe P
= —| ==
ap s p2
Therefore,
2_ P Op|, Op
S p2oelp  Ople
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Otherwise, let’s say if we have this instead € = ¢(p, p) = £(p(p, $), p). Same thing,
de = | ap 4 %) gp = & ( apd)@
aplp dplp Iplp \ Opls 0s dplp
Let’s keep s constant,
Oe (‘3p Oe
de = — — —t7ds d
0pp<<9ps $1,°°) aply™
Clearly,
O  Oe Oe
dpls  Opledpls ~ Oplp
We use T'ds = de + pdv to find g—;‘s,
Oe D
dpls  p?
Therefore,
p Oe| o  Oe
- = C R
p?  Oplp®  Oplp
5|
2o _P ol
s 2 0e Oe
p 3_12}/) a_p‘p
(¢) Perturbation of conservation of mass equation:
O+ + Sl + )] = 0
_— _— A
ot Po TP o Po TP
Ops  Op | Opov  Opw
“r . ZPoY -0
t + ot Ox - x
dp  Opyv 0
ot or

(d) Perturbation of conservation of energy:

B =

= pPo€o + PEo + pPo

Then,

(po+ P)eo +8) + 1

2

(potp)v

o 0
5 Pos & P20 + po) + o -[(poco + p2g + pot + po + P)U] = 0

2(— + —)_|_2
ot PEO T PoE O
95
80—5

ey
o0
ot  Ox

48
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0&
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=0
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(e) Since ¢ is a function of p, we compare the perturbed conservation of mass and energy equation
to see that they are related to each other by a constant factor ’f

29
0
poOp 0 (po _
—_— — — :0
p§6t+8x( 2p0v>

Po
dp 0
p_g_p + — @@ =0
py Ot Oz \ po
Hence,
de = Xdp
Po
Integrating gives:
- DPo_
Po
(f)
2= bor O
5o p2oelp  Ople
_ po+p 9po+p) 9(po + p)
(po+p)2 0o+ €) lpotn  O(po + p)leote
o+ _po+p [, P\
N2 2 L+~
(o +P) I Po
_ Mo JQrp (1 B 23)
Po Po

Po P Pop
=24 £ o

L

The partial derivatives reduce to derivative of perturbed quantities hence, we keep only the
zeroth order part of the pre-factor constant. This gives us the required expression for c,:

o _ [PoOD
*\ e

(g) Perturbation of conservation of momentum:

9p

s Op

g

0 L0 NS _

500 + )0) + = [(004P)0" + p + P

dpov  Op

ot * or

We hope to show that p = c%p. Since &(p,p) = Bp+ A,

I

0
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Then, B
2=
ople
Integrating gives,
Zp=p+C
Substituting back,
@pgﬁ 0 9_ .
or oz P =0
L0 (G
0t 8x Op N
(h) Differentiating w.r.t. space,
00v  co*p
T Bl ey
ot dx  py Ox?
0 1 9p 20%p
9 (_1o\ &9 _
ot po Ot po Ox?
Pp 0,
52 = 952 (CP)

(i) Wave equation with speed c;.
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8.3 Q3

3. (a) Consider,

(b) Ar = Ar.
1; P 0 a a
G oy ) fpl=x[b
p p s
0 0 w c c
(v + pb = \a
cg 10p __
CL;"‘bU‘i‘C;a—i = \b
(ve = Ac
For A = v,
'mﬂr pb =
$as + b0+ c;gg = bt
ve = ve
Solution is b = 0, ¢ = ¢2,a = —<2. The corresponding right eigenvector for A\ = v is
_op
Js
r? = 0
c
For A = v + ¢,

v+ pb = a(w+ cs)

C2
a + b0 + c%% = bw+ cs)
we = c(w+ c)

Solution is ¢ = 0,a = 1, %s. The corresponding right eigenvector for A = v + ¢, is

For A =v — ¢,
W-pr—a@’—cs)
+%+Clap—b@/—cs)

p Os

= clw— cs)
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Solution is ¢ = 0,a =1, —%5. The corresponding right eigenvector for A = v — ¢; is

dp  dv  ds
1 —c/p O
Taking any pairs of equality with the ds term gives:

=ds=0

5 :cvlnp—cplnp—i-const

p p
For ds = 0 and we know that s—‘p/ =,
p
vdp _ dp
P D

Integrating
~vInp = Inp + const

= p= econstp'y — AIO’Y
(e) Consider,
dp + P gy = 0

S

dv+%dp:()
p

Integrating and shifting all constants to the RHS
CS
v+ / —dp = const
p

Noting that ¢? = ap

¢z = Ayp'!

Cs = A'yp(w’_l)/Q (2)

Then,
s .
S = \/Av/,fﬂ/2 dp
pm 1/2

'y/ 2—
2¢,

v—1
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Hence,
2¢c,
v+ = const
/Y —
(f) Across a rarefaction,
r _
— = const
p’Y
pL _ P
pr P
R U
PL =PrL—
L Lo
w1
PL = PrL (p_) :
g pbr
(8) )
L s,L o 268
—1 v—1

From equation (2),

Cot _ (p_L>(71)/2: (]2)(71)/27
G\ P

«\ (v—1)/2v
= C, =Cs (p_)

2CS,L 2CS,L <p>k > (v=1)/2v
pL

. 2%, 1, [(p*)(v—l)/% ]
v =v, — —= || — -1
v—1 pL

(h) Equating and making p* the subject,

2 : * (7_1)/2’)’ 2 : * (7_1)/2’)’
Y (p_) Y Y ) (p_) .
vy—11|\pe v—1|\pr

265 268 205 w\ (v=1)/2v 2Cs «\ (v—1)/2v
Loy 20un ,R(p> N ,L(p)

Then,

UL—UR+

v—1 ’7—1_’7_1 p_R 71 p_L
(= 1)(vz ~ vr) e . P
5 + Csp + Co,R = (v=1)/2v T (v=1)/2v
Dgr pr
P12y P o e
|:pgcsil)%/2v + pgw%i§/2v:|

2v/(v=1)

5(y = 1)(vz — vR) + (csp + CsR)

p =
Cs,R Cs,L
77 _|__ 77

Lﬁ; /2y p(Lw 1)/2v
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9 2024-25 (MOCK)

9.1 Q1

1. (a) ki and kg are integers that determine left and right bounds of the numerical stencil.

(b)

At
C = CLM or
Monotone if: oH
>0 V]
ous
For LF scheme: u™" = £(1 + C)ul, + (1 — C)ullyy,
out! ourtt 1
L —=—(1+C)>0 d : -(1-C)>0
oul 2< +0) 2 o ou, 2< )
=-1<C<1
(c) Burger’s equation (conservation form):
ou 0 (1,
I (e -0
ot " ox (2“ )
Applying backward differencing:
At (1 1
n+1l __ n__ = (" 2 - n 2
u; = Uy ALE <2(uz) 2(”@—1) )
Consider:
OH At 0OH At

=1 = —u™* >
Ee 1 Axu’ >0 and

7

=—u; ;>0
our , Az 1T
Monotone when:

Ax
up >0 and u <-——

- At
So,

(d) Burger’s equation (primitive form):

U; ) E ((U?)2 - U’;L u’L*l)
Consider: SH A oK .
=1—-——2u'—ul,) > d = —u >
Jur A (2u} —u? ) >0 an i Al 2 0
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x
2u’7—u?1§—t and u! >0

Monotone when:

A
u?_122u?—£ and wu; >0
So,
ogu;‘gA—f

(e) Monotone when:

At

ul,; <0 and ul > —£L (conservative)
u <0 and wuly; <2u+ 5L (primitive)

So,

Ax<n<0
At — '

(f) Given numerical flux using Burger’s equation:

N 1Az, n
i+1/2 = 5&(% —ufy) + B

—_
7N
DO | —
—
£
T
il
S~—
[\
+
DO | —
—
I~
=3
SN—
V)
~

Consider:
Offv, 1Az 1 "
Gur - =2 ar T () 20
N Ax
Ui 2 -y
Of i1y 1Az 1, .
our, — aar Tgln) =0
ul <%
N
So,
lul| < &
AL

(g) Using C' = u?%, rewriting equation (2) for linear advection gives:

1 AL 1 AN
ui+1:§(1+UiA_x)ui—1+§(1_uiA_$)ui+l

1 1At
n+1 n n
P = 5(%‘—1 +uiyy) + BN

Then, for Burger’s equation (LF in primitive form):

u

(ujui ) — u?“?-;—l)

. 1 . LAt (1, o,
ultt = é(uif1 + i) — BN <§(“i+1)2 - 5(%’1)2)

%)
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Massage the primitive form to give two ”symmetric” flux terms. Consider Lax-Friedrichs
scheme for the linear advection equation:

1 1
U?H = 5(1 + C)ufy + 5(1 - C)u?-‘rl

u; u; u; + 2“271 + 2 i+1 2A (auiJrl - au?fl)
— Sl = ) = gl =) - 5 |5 () + S = £ - fa)]
At T1A 1A 1
= = T[S R ) b S Tl — ) + () + S )
1
— S () + Fiy))]

1A
5 A~ )+ S+ ) }
A
=u — A_;( inH/Z - Zil/Q)
o 1A 1
e = 5 Ry (e = i) + (£ + F(u))

For conservative form (preferable):

N . At
U; = Uy — Az ( zer};/Q - z‘Lfi/z)
Consider:
OH 1 n 1 At >0 = v Ax
=—4+-——u u: -
our , 2 2Ax ! = A
OH 1 1At >0 = n Ax
=————u u; —
our,, 2 2Ax tTT AL
So,
Ax . Az
- u: -
At — Y TOAt

(h) Conservative schemes only.

(i) No. Godunov’s theorem states that monotone methods are at most first order accurate. LW

scheme is a second-order method.

(j) Flux limiting can be used to give us a high-resolution total variation diminishing (TVD)

method, through using a non-linear combination of a high-order scheme and a low-order
monotone scheme. Higher-order methods are used everywhere except near discontinuities,
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where first-order method is switched on. This allows us to achieve a second-order accurate
oscillation-free solution.

Filipe = £+ G (Fh ) — £i5012)

where @;y1/2 = ¢iq1/2(r) is the limiter and r is the slope ratio.

A
Al. 2 y Ay Z 0
r = Az+l§2
i+1/2 4
Ai_1/2 @i <0

An example of a limiter function is Van-Leer or Minbee.

9.2 Q2

2. Same question as 2022-23 (Mock) Q2. Link

9.3 Q3

3. Same question as 2023-24 (Mock) Q3. Link
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10 Appendix

10.1 Method of Characteristic

Method of Characteristic (PDE to ODE): the idea is that for a PDE in characteristic form,
we can identify lines along which characteristic variables, v, are constant i.e. 9% = 0, where s = t

ds
and fi—f = ) for linear advection equation.

Consider the characteristic variable form of a PDE (only if Jacobian is diagonalisable):

8—V + Aa—u =0 where dv=C'du along dz = \dt
ot ox

The characteristic variable decouple the system of equations into m linear advection PDEs:

ov; ov;
‘ /\Z—Z - O
ot TN

dz _
dt

with m characteristic curves satisfying m ODEs: A;. For a given initial condition, the solution

is:
v = I/i(o) (x — \it)

which is just the advection of initial data. Transform back from char. variable to original variable:
u = Cv, where C is the matrix of right eigenvectors and C ™' is the matrix of left eigenvectors.

’U,(CL’,t) =V C(Z) ES 1/10(1) + 1y + 0(2) 4o

i.e. given a point (z,t) in the x — ¢ plane, the solution w;(x,t) at this point depends only on the
initial data at the m points x(()l) = x — \;it. These are the intersection of the characteristic speeds
with the x-axis. The solution for u can be seen as the superposition of m waves, each of which is

advected independently without change in shape.

WY\
U k! 5% k)

o 2
uz | =1 kél) + 1 k§3) + 3 k§3) + ..

Essentially, the solution is a linear combination of the right eigenvectors.

For real eigenvalues \; and the corresponding right eigenvectors K @), The characteristic speed
defines a characteristic field, the \;-field.

A;-field is linearly degenerate if: '
v U) - KOU) =0

A;-field is genuinely nonlinear if: A
VA(U) - KO(U) #0
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For Euler equations,

dv_ dv — % dr = (v — ¢,)dt
dv=|dy | =Cldu=| dp— % along dr =v
dv, dv + & dr = (v+ cy)dt

Along characteristic lines, the characteristic variable is constant, and the constants are called Rie-
mann invariants. Hence, the Riemann invariants are basically:

dv =0

For v_,

Rarefaction: Across a rarefaction wave, entropy is constant. This means:

P = constant
p’Y

We know for ideal gas:
dp| _p
p=(y—1)ps and =~ ==
(y—1) =
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10.2 Derivation of Rankine-Hugoniot Conditions

ou
§+V-f(u)zo

Integrate both sides w.r.t. x,

d b
G [ e =l ute0) ~ fut.0)

Let’s say there is a single discontinuity z, € [a, ],

d z5 (1) b

S

Using Leibniz’s integral rule,

- zs (1) b
ult ;)0 j/%{ ~uft, o) 2 W = [ Fult.) ~ Flult, )

8z _ Oz
ot ot

Take limit, a — z and b — =z, integral vanish and S =
u(t,27)S —u(t, al)S = —[f(u(t, x7)) — flult, 7))

= S(up—wur) = f(ur) — f(ur)
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10.3 Comnservation Form of Difference Schemes

1. Lax-Friedrichs Scheme
n+1 1 n 1 n
U, = —(1+C)UZ 1+—(1—c)ui 1

We can view LF scheme as an integral average within cell i,

1 Tiy1/2 1
ntl = i 2, ~At) d
i AJ] /x Uu (.T, 5 ) X

i—1/2

u

where,

(1) = {u?l yifz/t <a

ul,  ifz/t>a

1 Tit+1/2 1
= iz, -At) d
U, A /:Ei_l/2 u (ZE, 5 > i

1 alt/2 " g 1 Tit1/2 nog
—E/ Ui_q x+ﬂ/am/2 Uiy QT

Ti—1/2
CLAt/Q — Ii,1/2 n $i+1/2 — (IAt/Q n
Uy + Uity
Ax Ax

11\, 11\
= §C+§ Uifl—f— 5—50 ui+1

1 n 1 n
= 5(1 +c)ul , + 5(1 —o)uyy,

The Lax-Friedrichs solution at cell ¢ is a weighted average of the solution of the Riemann
problem with the left and right neighbour states as data, at time ¢ = %At. We can also say it
is upwind bias since the upwind term always has the larger weight.

Generalise to non-linear system of conservation laws:
U +FU),=0
1 Tit1/2 1
Lax-Friedrichs: U} = — / U |z, At | dx
Ax Zio1)2 2

Integrating the conservation law within control volume [—1Ax, 1Ax] x [0, £ At],

<
51
>
8
Tt
QL
Py

JAr bar S | 34
/ U(x,=At) dx:/ U(x,0)dx + (U(——A:U,t))dt—/ F(
—%Aw 2 —%Ar 0 2 0

1 1 1
= §ALE (U?+1 -+ U?fl) + §AtFZ‘_1/2 - §AtFZ’+1/2
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Then,

1 1 At
n+1 n n
Ut = 3 (U, +UM) + S Az (Ficij2 — Fiyp)
Putting it into the conservation update form:

At
Ut =Ul + - (Fi - FiL )

algebraic manipulation gives us the expression for the Lax-Friedrichs flux:

1Az
2 At

1 n n n
Fz+1/2 - 2(F + Fz+1) + 3 (U Uz'—i—l)

. Lax-Wendroff Scheme
n+1 1 n ]'
Uy = 56(1 +oJui g + (1= cuy — 50(1 — cJujy,

Writing it in conservative form for linear advection equation we identify the intercell numerical
flux:

At 1 At 1 At
nil g St my 280 n) == 2N - o) (aul
wrtt = - e )+ L2 o) - L2 o)
— - 5 et = 0+ a4 51 et
. At [l—c, l+c¢, ,. 1—c¢, .. 14¢c,
=t - [Pt + ) = g ) - )

Hence,

1+c¢,, 1—-c,,
fiLfll/zz Fi+ 9 -fi+1

It is a weighted average of fluxes of the left and right of the interface.

It can also be obtained from:

1+c¢ 1—-c

Lw n+1/2 n+1/2 n n
-fi+1/2_f(u’i+1/2) where Uiy = 5 u; o Uity

n+1/2

for which Ui/

is a half-time step Lax-Friedrichs update!

For non-scalar conservation laws, we have the integral formulation instead:

1Az
o n+1/2 nt1j2 1 2 1
firipg = f(wiiyjy)  where wiyjy' = E/;M uip1j2(, SAY) Az
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3. Warming-Beam (a > 0)

1 1
uftt = 50(0 —Dul g+ c(2—c)uiy + 5(0 —1)(c—2)u
with CFL condition: 0 < |C| < 2. It is a fully one-sided scheme where the stencil is taken
from only the upwind direction. The enlarged stability range means one may advance in time

with a larger time step At, boosting efficiency.

Similarly, we can attempt to write it in conservative form for linear advection equation to
identify the intercell numerical flux:

1 1
uftt = 50(0 —Dul 5 +c(2—c)ul | + 5(0 —1)(c—2)u}

= %%(c -1y + %(2 —o)fit i+ %(02 — 3¢+ 2)uy

— %i_i(c — ), + i—i(? — o) fiL, + %ﬁ—i(c =3

i 2_; _—%(c ) (2O, - %(c — 3)fz-"]

—up - 52 [ - o - ju—2as, - e 1)

:u?_i_; :%(3_c)f[‘—%(3—c+1—6)ff_1 —%(c—l)ff_z]

— % :%(3 —o)ff + %(c — D, - %(3 — ) ffy - %(C - 1)f{‘2}

Hence,

1 n 1 n
K?p = 5(3 —o)fi + 5(0 ol O
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10.4 Modified Equation

1. First-order upwind Method

is actually equivalent to:

ou  0%u At ou 0*u Az
= g At2 Azr?) =
8t+8t2 5 +a833 a@:ﬁ 5 + O(At*) + O(Az") =0
Noting that:
(O — a0y) (0 + ady)u =0

Then,
(@t — azﬁm)u =0

du N Ju _ (alAx a’At\ 0%u
ot “or ~ \ 2 2 ) 022
ou ou 1 9%u

The numerical viscosity is:

1
apw = §CLA1’(1 —¢])
2. Lax-Friedrichs Scheme
n+1 1 n ]' n
u; = 5(1 +c)ui g + 5(1 —ouiy,

5(% - ui ) + 5(% H—ul )+ §C(Uz‘+1 —u; 1) =0

1 At? Az?
3 (u + w At + uttT — U — Uy AT — ume)

1 At? Ax?
+§ (u + w At + UttT — U+ uzAx — ume>

1 Az? Az?
—|—§c <u + uy Az + ume —u+ u Axr — ume) =0

1 At? Ax? 1 At? Ax?

1
+5¢ (2u,Azx) =0
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DO | —

2

The numerical viscosity is:

arp

(2utAt + uy At? — umAx2) + ¢ (uAz) =0

1
WAL + =a*u, At? —

U + au, =

Let’s take their ratio and take 0 < ¢ <1,

1
§umA:c2 + au, At =0

2
% (AA_xt - azAt) U

a2ACx (1

—?) _1+ec

uyw

T Liaz(l—|d) ¢

< 1+4+c¢

2 < 00

c
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10.5 Monotone method

For a method of the form:
kr
1
U;‘H = H(U?—ky“wu?%g) = Z bruiyy
k=—kr,
It is monotone when all coefficients are positive or zero b, > 0,V k, in other words:

OH
— >0 .Y
ou ~ v J

That is, H is a non-decreasing function of each of its argument.

The definition of a monotone scheme is actually equivalent to the following property:
if o' >wu!Vi then U?+1 > u?“

This property is the discrete version of the following property of the exact solution of the conser-
vation law: if two initial data functions satisfy vy(z) > ug(x) Ve, then their corresponding solutions
satisfy v(z,t) > u(z,t) Vt.

Hence, monotone schemes mimic a basic property of exact sols. of conservation laws.

Monotone methods do not form spurious oscillations. Given the data set {u}, if the solution
set {ut1} if obtained with monotone method, then

max{u/ '} < max{u} and min{u!'} > minfu)}
A (A 1 T

Proof: Define vj' = max;{u}} = constant, then evolving it gives vt = P As vl > ul, then

%

vt =P >yt Therefore, max;{uf™'} < max;{u?}. An obvious consequence is:
max{u} < .. <max{ul} and min{u’} > ... > max{u’}
7 (2 (2 (2

Hence, no new extrema are created, and thus spurious oscillations do not appear. In numerical so-
lutions computed with monotone methods, minima increase and maxima decrease as time evolves.
This results in clipping of extrema, which is in fact a disadvantage of monotone methods.

Another consequence is: min;{u]} < minj{u™'} < o™ < max;{u!*'} < max;{u?}. This says
that the solution at any point i is bounded by the minimum and maximum of the data.

OR in terms of fluxes: 9 9
Jiv1y2 >0 and Jiv1y2

n - n
ou; ouily,

<0
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a decreasing function of its second argument.

Example: applying it to LF flux:

LF

/i

+1/2 — 5

LF
0 i+1/2

1
2

n
ou;

Likewise,
LF
afh /2

n
ou,

1

:§f/

Overall, we have the condition of:

Ax
of

Notice that A(u) o
eigenvalue of the system to ensure the condition is definitel

for stable numerical method.

In other words, the numerical flux fi1q/2(u}, u}, ) is an increasing function of its first argument and

1 1A
[F(03) 4 F ()] 5

C2At

are the characteristic speeds, and we will take f’ to be the maximum

n
— Ui

)

y satisfied. We recover the CFL condition
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10.6 Degenerate Waves

For example, in 2D Euler equations, the primitive variable form is:

p PV p vy p 0 (1) p
0 0 2 0 0 . 0 = 0
Il 9 Putr | g o 2] v p |l Z 1% =0
ot | pvy ox PUZVy ot | vy 0 0 wv, O[] Oz |wvy
E (E + p)u, p 0 pc2 0 v, p
The eigenvalues are:
/\1:Um_cs 5 /\2:)\3:Ua: s )\4:vx+cs

We have 4 real eigenvalues, but they are not all distinct. The system is hyperbolic, but not strictly
hyperbolic.

There could still be 4 distinct waves in the solution. The multiple waves with the eigenvalues are
called degenerate waves. Degenerate waves are indistinguishable in the solution, but have different
mathematical properties.

Characteristic variables:

dvg dp — % dr = vdt
dp de = dt
dv = ZUJF _ | dvat e along v B (Ve + )
v dv, — dx = (v, — ¢)dt

dvgh dv, dr = v,dt
e The fourth characteristic variable is associated with a shear wave.
e Shear wave moves at the same speed as the contact discontinuity.
e A wave where the velocity is moving perpendicular to the wave.
e Across a shear wave, only the transverse velocity i.e. v, jumps.

Consequences for Riemann problem: transverse velocity jump effectively decouples from the
other quantities in the characteristic variables, so the shear wave (coincides with contact disconti-
nuity) is the only characteristic line across which the transverse velocity jumps.

* *
PrL, Pr
* *
v v
w) = z and z
Uy,L Uy,R
* *
b p

Vanishing waves:
e For complex systems, other waves may be degenerate.

e Also, the other waves can exist mathematically, but variables might have zero-height jump
across the waves.
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10.7 Recommended Readings

1. Course Book: Toro, E. Riemann Solvers and Numerical Methods for Fluid Dynamics: A
Practical Introduction. in Riemann Solvers and Numerical Methods for Fluid Dynamics
(2009). doi:10.1007/b79761. Link
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