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1 2018-19 (MOCK)

1.1 Q1

1. (a)
Eikonal equation: |∇ϕ| = 1

(b) Reinitialisation: returning a function to a signed distance function, whilst maintaining the
location of the interface (zero-contour). It involves solving the Eikonal equation.

Why perform reinitialisation?

• A level set function ϕ that describes the location of an interface is advected using interface
material velocity.

• However, this velocity is not constant in space and can generate non-linear behaviour.

• This causes ϕ to become too smeared or too steep.

• If ϕ becomes too steep and resemble a discontinuity, the non-conservative method use for
evolving ϕ fails, resulting in the interface being in the wrong position.

• If ϕ becomes too smeared, it is easy to introduce errors into the interface with any small
errors in the update such as round-off error.

• Returning ϕ to a signed distance function prevents all these from happening.

(c) Iterative reinitialisation:

• Idea is to consider the solution process to the Eikonal equation as evolving the following
PDE to steady state:

∂ϕ

∂τ
+ sgn(ϕ) (|∇ϕ| − 1)︸ ︷︷ ︸

signed-distance
function

= 0

where τ is a fictitious time variable.

• The PDE will evolve to steady state provided the slopes of ϕ are calculated in the upwind
direction (outwards from the interface).

• We can approximate |∇ϕ| with first order derivatives and the sign of sgn(ϕ)∂ϕ
∂x

tells us
which is the upwind direction.

ϕx =

{
ϕ−
x,i =

ϕi,j,k−ϕi−1,j,k

∆x
, if sgn(ϕ)∂ϕ

∂x
≥ 0

ϕ+
x,i =

ϕi+1,j,k−ϕi,j,k

∆x
, otherwise

• Information is propagated outwards from the interface, so we can get an accurate level
set function close to the interface relatively quickly (Fedkiw say ∼ 10 iterations). We just
need to ensure ϕ looks good close to the interface.
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Fast Marching Method:

• Says that there is a correct order in which we consider the cells during reinitialisation.

• Start with the closest cell to the interface and reinitialise (i.e. solve the Eikonal equation)
all its possible neighbours. Insert the neighbours into an ordered list of cells sorted by
distance to interface.

• Now, there is no more information we can get out of this cell, so we can mark it as known,
removing it from further reinitialisation.

• We move on to the next closest cell and repeat until we go through every cell in the domain.

• Uses multimap as data structure. It has time complexity O(N logN).

Fast Sweeping Method:

• Treats the reinitialisation procedure as a series of 1D reinitialisation steps, (O(N)).

• Start by setting values not adjacent to the interface to a sufficiently large value, effectively
”removing them”. This way, if any newly-calculated ϕ is smaller than the current value,
we know it is a better approximation, and we keep it.

• Algorithm:

i. Start with the first cell in the sweep and check if we are close to the interface i.e.
ϕiϕi+1 < 0. Repeat until we are adjacent to the interface, and then keep going until we
are no longer adjacent to the interface, but the previous cell in the sweep was adjacent.

ii. Compute the neighbours with minimum magnitude (ϕx, ϕy, ϕz). For positive ϕ, ϕx =
min(ϕi+1,j,k, ϕi−1,j,k). For negative ϕ, ϕx = max(ϕi+1,j,k, ϕi−1,j,k).

iii. Plug these values into our squared Eikonal equation, giving a quadratic in ϕ̂i,j,k:(
ϕ̂i,j,k − ϕx

∆x

)2

+

(
ϕ̂i,j,k − ϕy

∆y

)2

+

(
ϕ̂i,j,k − ϕz

∆z

)2

= 1

Figure 1: Geometrically, it is the intersection of an ellipsoid centred at (ϕx, ϕy, ϕz) with line x = y = z.

iv. Keep ϕ̂i,j,k if it is smaller in magnitude than the current guess for this cell. Take
positive root for +ϕ and negative root for −ϕ. If the solution is ill-defined, remove the
largest of ϕx, ϕy, ϕz and try again.

v. If we reach another cell interface, we do not do anything until we got to a non-adjacent
cell whose previous cell was adjacent.

vi. Once we reached the edge of the domain, move on to the next 1D sweep in the same
direction.

vii. Once we complete the sweep for every cell in the domain, we switch directions.

viii. We continue the sweep algorithm until we cover all dimensions and all directions.
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(d) Mesh in cut cell method is generated by ‘cutting out’ the geometry of the rigid body from a
background grid. It suffers from the small cell problem, where the maximum stable timestep
is restricted by the size of the smallest cell in the domain.

A level set approach implicitly defines the boundary of the rigid body, using a level set func-
tion. It uses the ghost fluid method to maintain the sharp interface, with reflective boundary
conditions applied.

(e) Flux stabilisation and cell linking.
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1.2 Q2

2. (a) Sharp and diffuse interface methods.

(b) Ghost fluid method with reflective boundary condition applied, or cut-cell method.

(c) i. Small air bubble in water hit by shock wave: sharp or diffuse interface method. High
pressure of shock wave cause the bubble to rapidly compress, leading to forceful collapse
and jet formation.
Sharp: capture fine features such as small bubbles
Diffuse: capture mixing behaviour

ii. Explosion within steel box containing mixture of fuel and air: diffuse interface method.
Natural approach to dealing with chemical reaction and mixing, using a single system of
equations and mixture rules. It allows all materials to exist at every point in the domain,
with their own ρ, v, p. The amount of material in each computational cell is tracked by
evolving a volume/mass fraction.

iii. Air flow over a commercial airliner travelling at a constant speed (rigid body modelling):
cut-cell method, evolution to steady state.

(d) Original ghost fluid method:

• Ghost fluid methods is a numerical technique that provides dynamic boundary conditions
for sharp and implicitly represented interface between materials.

• A level set function ϕ is used to define the interface. Its evolution follows an advection
equation:

∂ϕ

∂t
+ v ·∇ϕ = 0

• The numerical update for ϕ is:

ϕn+1
i = ϕn

i − vnx,i

(
∂ϕ

∂x

)n

i

∆t

where an upwind approach can be used to compute the derivative of ϕ:(
∂ϕ

∂x

)n

i

=

{
ϕ−
x,i =

ϕi,j,k−ϕi−1,j,k

∆x
, if vx,i > 0

ϕ+
x,i =

ϕi+1,j,k−ϕi,j,k

∆x
, if vx,i < 0

• A good choice for ϕ is the signed distance function, |∇ϕ| = 1, where its magnitude gives
the shortest distance to the interface. However, the evolution of the level set function does
not necessarily maintain the SDF nature. Here, reinitialisation is required to return ϕ to
an SDF, whilst maintaining the location of the zero-contour. Otherwise, ϕ might become
too steep or too smeared.

• The conditions for thermodynamically consistent boundary conditions are constant entropy
across the interface, and velocity and pressure copied from the real material to the ghost
fluid to ensure velocity and pressure equilibrium.
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• We can enforce constant entropy using:

p

ργ
= const

such that:
pI
ργII

=
pG
ργIG

⇒ ρG = ρI

(
pG
pI

)1/γI

We can compute the corresponding density in the ghost region as we know its pressure.

• The original GFM performs an isobaric fix by extending the extrapolation of entropy,
taking the value from one cell further from the interface in the real material. As a result,
this also changes the density in the real cell adjacent to the interface.

• Isobaric fix helps fix issues caused by shock wave (”overheating”), but it can add additional
conservation errors.
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1.3 Q3

3. (a) Consider,
∂v

∂t
+ v

∂v

∂x
+

1

ρ

∂p

∂x
=

Dv

Dt
+

1

ρ

∂p

∂x
= 0

�
�
��

[
Dv

Dt

]
+

[
1

ρ

∂p

∂x

]
= 0[

1

ρ

∂p

∂x

]
= 0

Consider,
∂p

∂t
+ ρc2s

∂v

∂x
+ v

∂p

∂x
= 0

�
�

��
[
Dp

Dt

]
+

[
γp

∂v

∂x

]
= 0[

γ
∂v

∂x

]
= 0 , since [p] = 0

(b) To the left,

ρLx =
ρi − ρi−1

∆x

ρL = ρLx (xϕ − xi) + ρi

= ρi

(
xϕ − xi

∆x
+ 1

)
− ρi−1

(
xϕ − xi

∆x

)
= −θρi−1 + (1 + θ)ρi

(c) To the right,

ρRx =
ρi+2 − ρi+1

∆x

ρR = ρi+1 − ρRx (xi+1 − xϕ)

= ρi+1

(
1 +

xi+1 − xϕ

∆x

)
− ρi+2

(
xi+1 − xϕ

∆x

)
= ρi+1

(
1 +

xi +∆x− xϕ

∆x

)
− ρi+2

(
xi +∆x− xϕ

∆x

)
= ρi+1

(
2− xϕ − xi

∆x

)
− ρi+2

(
−xϕ − xi

∆x
+ 1

)
= (2− θ)ρi+1 − (1 + θ)ρi+2

(d) At xi,
pi = pL + (xi − xϕ)p

L
x

At xi+1,
pi+1 = pR + (xi+1 − xϕ)p

R
x

8



MPhil Scientific Computing 1 2018-19 (MOCK) Multiphysics Modelling for Four States of Matter

There is no jump in p and 1
ρ
∂p
∂x

across the interface, so:

pL = pR and
1

ρL
pLx =

1

ρR
pRx ⇒ pRx =

ρR

ρL
pLx{

pi = pL + (xi − xϕ)p
L
x

pi+1 = pL + (xi +∆x− xϕ)
ρR

ρL
pLx(

pi
pi+1

)
=

(
1 −θ∆x

1 (1− θ)∆xρR

ρL

)(
pL

pLx

)
(e)

pi+1 − pi
∆x

=

(
(1− θ)

ρR

ρL
+ θ

)
pLx

pLx =
pi+1 − pi

∆x

ρL

(1− θ)ρR + θρL

Substitute expression for pLx into equation (1),

pi = pL − θ
(pi+1 − pi)ρ

L

(1− θ)ρR + θρL

pL = pi + θ
(pi+1 − pi)ρ

L

(1− θ)ρR + θρL

pL =
pi(1− θ)ρR + pi+1θρ

L

(1− θ)ρR + θρL

9
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2 2019-20 (MOCK)

2.1 Q1

1. (a) i. A line:

x = xI

⇒ ϕ = x− xI

ii. A sawtooth:

{x = x1 , x = x2}

{ϕ1 = x− x1 , ϕ2 = x2 − x}

ϕ = min(ϕ1, ϕ2)

iii. A cone:

(x− a)2 + (y − b)2 = r20

ϕ = r0 −
√

(x− a)2 + (x− b)2

iv. A pyramid:

{x = a− L/2 , x = a+ L/2 , y = b+ L/2 , y = b− L/2}
{ϕ1 = x− (a− L/2) , ϕ2 = (a+ L/2)− x , ϕ3 = y − (b− L/2) , ϕ4 = (b+ L/2)− y}

ϕ =



min(ϕ1, ϕ2, ϕ3, ϕ4) , if ϕ1 > 0 , ϕ2 > 0 , ϕ3 > 0 , ϕ4 > 0√
(x− (a− L/2))2 + (y − (b− L/2))2 , if ϕ1 < 0 , y < b− L/2

ϕ1 , if ϕ1 < 0 , b− L/2 < y < b+ L/2√
(x− (a− L/2))2 + (y − (b+ L/2))2 , if ϕ1 < 0 , y > b+ L/2

√
(x− (a+ L/2))2 + (y − (b− L/2))2 , if ϕ2 < 0 , y < b− L/2

ϕ2 , if ϕ2 < 0 , b− L/2 < y < b+ L/2√
(x− (a+ L/2))2 + (y − (b+ L/2))2 , if ϕ2 < 0 , y > b+ L/2

ϕ3 , if ϕ3 < 0

ϕ4 , if ϕ4 < 0
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(b) First order upwinded Hamilton-Jacobi scheme:

• Level set equation can be written in the form of Hamilton-Jacobi equation:

∂ϕ

∂t
+H(∇ϕ) = 0

where in this case,

H(∇ϕ) = vx
∂ϕ

∂x
+ vy

∂ϕ

∂y
+ vz

∂ϕ

∂z

• In discretised form:

ϕn+1
i,j,k − ϕn

i,j,k

∆t
+ vnx,i,j,k

(
∂ϕ

∂x

)n

i,j,k

+ vny,i,j,k

(
∂ϕ

∂y

)n

i,j,k

+ vnz,i,j,k

(
∂ϕ

∂z

)n

i,j,k

= 0

where i, j, k are the positions in the x, y and z direction. ∆x and ∆t is the discretised
space and time.

• Upwinded first-order approximation to the spatial derivative:(
∂ϕ

∂x

)n

i,j,k

=

{
ϕ−
x,i,j,k =

ϕi,j,k−ϕi−1,j,k

∆x
, if vx,i,j,k > 0

ϕ+
x,i,j,k =

ϕi+1,j,k−ϕi,j,k

∆x
, if vx,i,j,k < 0

• Similarly for the y- and z-derivatives.

(c) No, it would not work, as:

• The velocity is dependent on the shape of the interface.

• An upwinded difference would lose information from the interface, leading to instabilities.

(d)
∂ϕ

∂t
+ A

∇ϕ

|∇ϕ|︸ ︷︷ ︸
v=An̂

·∇ϕ = 0

∂ϕ

∂t
+ A|∇ϕ| = 0

11
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2.2 Q2

2. (a) Spurious oscillations originating at the discontinuity. Instability.

(b) Why standard FVM fail for multiphysics problems?

• As the system evolves, γ smears, according to the average of the individual γρ:

γρ =
1

2
(γ1ρ1 + γ2ρ2)

• and it assumes this represents the physical mixing of the gases.

• But, this is wrong, as we need to know the volume fraction of the gases. This model
leads to an underdetermined system.

• We have 6 independent variables {ρ1, ρ2, v, p, e, γ}, but only 4 evolution equations and
1 EoS.

(c) Mathematically, the solution is a moving contact discontinuity at constant speed v with no
evolution of γ. Numerically, there is no guarantee that the smearing of conserved variable γρ
and ρ is consistent. Any error will lead to a mixture region, which is not supported by this
formulation. Spurious oscillations may result.

(d) Describe interface methods and their advantages/disadvantages.

Diffuse interface modelling:
Description

• Can use for both sharp (!!) and diffuse transition.

• Model the multiphysics problem using a single system of equations.

• Each computational cell can contain more than one material.

• Supplement the individual {ρ , ρv, E} conservation/balance laws with a transport equation
for the volume fraction. Physics is captured in the balance terms.

• Ensure stability of method in mixture regions using thermodynamic mixture rules.

Advantages

• The formulation handles both material interaction and interface, and allows for a physical
representation of mixtures.

• No need to track the interface, it is interface capturing.

• Simple to incorporate surface forces e.g. surface tension as source terms.

• Natural formulation for phase change and chemical reactions.

Disadvantages

• May require non-conservative formulation.

• Each combination of materials requires its own formulation, difficult to deal very difference
systems of equations e.g. solids.

12
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• Diffuse treatment of sharp interface: interface smearing from numerical evolution intro-
duces considerable error. Can be reduced by sharpening and anti-diffusion techniques.

• For multi-fluid systems: relaxation is effectively converting pressure or velocity from one
material to another in a thermodynamically consistent manner and this often requires
complex root finding using the EoS + temperature closure condition may be unphysical.

Extension beyond two materials

• Trivially extended by including additional equations for volume fractions and densities.

• But, mixture rules become trickier, and primitive variables are harder to find which may
require iterative root finding.

Sharp interface modelling:
Description

• Can only handle sharp transition.

• Model each material within the multiphysics problem with its own system of equations.

• An additional equation is required to track the position of the interface i.e. level set
equation.

• Dynamic boundary conditions are applied at the interface location to ensure thermody-
namically reasonable behaviour e.g. ghost fluid method.

Advantages

• Each material can have its own formulation and/or its own numerical method.

• Sharp interface can capture fine features, especially where you don’t expect mixing to
occur.

Disadvantages

• With only one material in a computational cell, there could be non-conservative errors
from mass gain and losses as the interface move.

• Stepped interface due to cells being either in or out could generate additional waves/errors.

• Hard to model phase change/chemical change due to need to reassign mass.

Extension beyond two materials

• Simply add an extra level set equation and material system of equations for each material.

• But, need to use level set fix-up algorithms to ensure each computational cell belongs to a
unique material.

13
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Advantages of Level Set Methods

• Models material interface with high accuracy.

• They evolve a smooth function, rather than a discontinuous jump.

• Easy to compute normal direction and curvature of the level set function:

n̂ =
∇ϕ

|∇ϕ|
and κ = ∇ · n̂ = ∇ ·

(
∇ϕ

|∇ϕ|

)
although these are generally computed at the cell centres, the smooth nature of ϕ means
they are accurate enough close to the interface.

• Signed distance function (|∇ϕ| = 1), where the magnitude of ϕ gives the shortest distance
to the interface in the normal direction.

14
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2.3 Q3

3. (a) Consider the characteristic equation:∣∣∣∣∣∣
v − λ ρ 0
0 v − λ 1/ρ
0 ρc2s v − λ

∣∣∣∣∣∣ = 0

(v − λ)[(v − λ)2 − c2s] = 0

λ1 = v , λ2,3 = v ± cs

(b) (
−c2s 0 1

)v ρ 0
0 v 1/ρ
0 ρc2s v

 =
(
−vc2s 0 v

)
= v

(
−c2s 0 1

)
(
0 −ρcs 1

)v ρ 0
0 v 1/ρ
0 ρc2s v

 =
(
0 −ρcs(v − cs) v − cs

)
= (v − cs)

(
0 −ρcs 1

)

(
0 ρcs 1

)v ρ 0
0 v 1/ρ
0 ρc2s v

 =
(
0 ρcs(v + cs) v + cs

)
= (v + cs)

(
0 ρcs(v + cs) v + cs

)
λ1 = v corresponds to l1, λ2 = v − cs corresponds to l2 and λ3 = v + cs corresponds to l3.

(c)
−c2sdρ+ dp = 0 along λ = v

−ρcsdv + dp = 0 along λ = v − cs

ρcsdv + dp = 0 along λ = v + cs

(d) For left-moving wave, use: dp+ ρcsdv = 0,

p∗L − pL = −ρLcs,L(v
∗
L − vL)

(e) For right-moving wave, use: dp− ρcsdv = 0,

p∗R − pR = ρRcs,R(v
∗
R − vR)

15
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(f) Across contact discontinuity, p∗L = p∗R = p∗ and v∗L = v∗R = v∗.{
p∗ − pL = −ρLcs,L(v

∗ − vL)

p∗ − pR = ρRcs,R(v
∗ − vR)

Subtracting,
−pR + pL = ρRcs,R(v

∗ − vR) + ρLcs,L(v
∗ − vL)

pL − pR = (ρRcs,R + ρLcs,L)v
∗ − ρRvRcs,R − vLρLcs,L

v∗ =
pL − pR + ρRvRcs,R + vLρLcs,L

ρRcs,R + ρLcs,L

Also,

p∗ = pR + ρRcs,R

(
pL − pR + ρRvRcs,R + vLρLcs,L

ρRcs,R + ρLcs,L
− vR

)
= pR + ρRcs,R

(
pL − pR +(((((ρRvRcs,R + vLρLcs,L −(((((ρRvRcs,R − ρLvRcs,L

ρRcs,R + ρLcs,L

)
= pR +

ρRcs,R(pL − pR) + ρRρLcs,Rcs,L(vL − vR)

ρRcs,R + ρLcs,L

= (((((ρRcs,RpR + ρLcs,LpR + ρRcs,R(pL���−pR) + ρRρLcs,Rcs,L(vL − vR)

ρRcs,R + ρLcs,L

=
ρLcs,LpR + ρRcs,RpL + ρRρLcs,Rcs,L(vL − vR)

ρRcs,R + ρLcs,L

(g) For left-moving wave, use dp− c2sdρ = 0

p∗ − pL = c2s,L(ρ
∗
L − ρL)

ρ∗L = ρL +
p∗ − pL
c2s,L

(h) Assumption: A(w) is constant.
Advantage: Allow us to derive b.c. for arbitrary interfaces between two very different systems
of equations.
Disadvantage: The assumption of a constant primitive matrix is not physical, and may fail
under extreme conditions, leading to spurious oscillations.

(i) Slightly relax the assumption that A(w) = const. Instead, we get an averaged state for A(w̄)
using the intermediate state obtained from the method and the initial state:

p∗R − pR = ρRcs,R(v
∗
x − vR) , where ρRcs,R =

1

2
(ρRcs,R + ρ∗Rc

∗
s,R)

p∗R − pR = c2s,R(ρ
∗
R − ρR) , where c2s,R =

1

2
(c2s,R + c∗2s,R)

Since we no longer have a closed expression, the process of obtaining intermediate states via
the jump conditions can be continued iteratively, until a steady state is reached.

Alternatively, an exact, or more accurate approximate Riemann solver may exist.
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3 2019-20 (EXAM)

3.1 Q1

1. (a) To get thermodynamically consistent boundary conditions, the ghost fluid method assumes
constant entropy across the interface and copies pressure and velocity from the real material
to the ghost fluid.

s = cv ln p− γcv ln ρ+ const = cv ln

(
p

ργ

)
+ const , where γ =

cp
cv

=
cv +R

cv

s− const

cv
= ln

(
p

ργ

)
We can enforce constant entropy using:

p

ργ
= const

Consider two cells, xI is a real cell adjacent to the interface, and xG is a cell within the ghost
fluid region.

such that:
pI
ργII

=
pG
ργIG

⇒ ρG = ρI

(
pG
pI

)1/γI

We can compute the density in the ghost region ρG as we know its pressure pG (copied). The
adiabatic index γI is that of the real material at the cell xI .

(b) No.

• The assumption of constant entropy across the interface is not true for shock waves.

• For a strong shock wave, it can predict a reflected rarefaction when there is actually a
reflected shock wave.

• If there is a temperature gradient across the interface, the constant entropy assumption
would not hold.
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(c) 2D multiphysics system which contains an interface between an elastoplastic solid
material and a liquid:

• Requires Riemann-problem based ghost fluid methods. Either the real GFM or the Rie-
mann GFM.

How to setup and apply dynamic boundary conditions for cells adjacent to the interface?

• Firstly, on a discrete grid, a computational cell xI next to the interface is identified through
a change in sign of the level set function.

• For real GFM:

– A mixed-material Riemann problem is then set up between xI and one of the eight
cells surrounding it.

– The choice of cell is that it must align most closely with the normal vector and is in
the other material.

– Issue: two states for the Riemann problem are a different distance from the interface.

For Riemann GFM:

– Instead: aim to find two interpolated states, equidistant from the interface.

– The value of ϕ at xI tells you its distance from the interface, with the position given
by xP = xi − nϕ, assuming normal vector point into the shaded region.

– Two points equidistant from the interface are constructed xP1,2 = xP ± (1.5∆x)n̂.

– These two points are then used to interpolate two states for the mixed-material RP.

• Once we have these states, the normal vector can be used to rotate them normal to the
interface. E.g.

(vx, vy, vz)L, (vx, vy, vz)L → (vn, (v − vnn))L, (vn, (v − vnn))R

⇒ (v∗, (v − vnn)L), (v
∗, (v − vnn)R)

18
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• The mixed-material RP between two neighbouring states, qL and qR is then solved to
obtain two intermediate state, q∗

L and q∗
R.

• Due to the complex nature of the evolution equations for a solid, a linearised solver will
be required to obtain the intermediate states. It assumes the primitive variable matrix is
constant.

• The value of cell qI is then replaced with one of the left intermediate star states from the
Riemann problem.

– If xI contains the real material, it is replaced by its own intermediate state.

– If xI contains the ghost material, it is replaced by the left intermediate state of the
material the other side of the interface.

How to propagate information into ghost fluid regions?

• Once all cells adjacent to the interface have had their value set, these state need to be
propagated (further) into the ghost fluid region, through constant extrapolation.

• This is done by the solution of a boundary-value problem: n̂ ·∇Q = 0.

• Appropriate methods for doing this are iterative pseudo-time evolution of the Eikonal
equation, a fast marching method or a fast sweeping method.

• For iterative:

– Solve:
∂Q

∂τ
+ sgn(ϕ)n̂ ·∇Q = 0

for some fictitious time τ and all derivatives are first order upwind (based on ϕ).

For Fast sweeping:

– Solve:
n̂ ·∇Q = 0

nx

(
Qi,j,k −Qx

∆x

)
+ ny

(
Qi,j,k −Qy

∆y

)
+ nz

(
Qi,j,k −Qz

∆z

)
= 0

– where the direction of the normal vector determines the winding direction

– Consider four sweeps of the domain, and compute the updated values.

For Fast marching:

– All points (further) in the ghost fluid region are ordered by the magnitude of the value
of the level set function. In this order, the Eikonal equation with first order derivatives
(again winded based on the normal direction) is solved.

(d) • Length scale: if the scale of the simulation is sufficiently large that small-scale features
due to wave interactions between the solid and the liquid are negligible.

• Time scale: if the timescale of the behaviour of interest is significantly larger than the
timescale of waves propagating in the solid.

(e) Treat the solid as a rigid body, either as a reflective boundary condition applied with a ghost
fluid method, or through cut cell methods.
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3.2 Q2

2. (a) 5 equation:
∂α1

∂t
+ u ·∇α1 = 0

∂α1ρ1
∂t

+∇ · (α1ρ1v) = 0

∂α2ρ2
∂t

+∇ · (α2ρ2v) = 0

∂ρv

∂t
+∇ · (ρv ⊗ v + pI) = 0

∂ρE

∂t
+∇ · [(ρE + p)v] = 0

6 equation:
∂α1

∂t
+ u ·∇α1 = 0

∂α1ρ1
∂t

+∇ · (α1ρ1v) = 0

∂α2ρ2
∂t

+∇ · (α2ρ2v) = 0

∂ρv

∂t
+∇ · (ρv ⊗ v + pI) = 0

∂α1ρ1e1
∂t

+∇ · [α1(ρ1e1 + p1)v] = 0

∂α2ρ2e2
∂t

+∇ · [α2(ρ2e2 + p2)v] = 0

Source terms: can add compaction terms for 5-equation formulation and cavitation terms for
6-equation formulation.

(b) Use:
∂αa

∂t
= µ(pa − pw) and

∂αaρaea
∂t

= −pIµ(pa − pw)

Equate expressions for µ(pa − pw):

∂αa

∂t
= − 1

pI

∂αaρaea
∂t

αaρa
∂ea
∂t

+
���

��
ea
∂αaρa
∂t

= −pI
∂αa

∂t

∂ea
∂t

= − pI
αaρa

∂

∂t

(
αaρa
ρa

)
(c)

∂ea
∂t

= − pI
αaρa

(
αaρa

∂Va

∂t
+ Va

�
�

��∂αaρa
∂t

)
∂ea
∂t

= −pI
∂Va

∂t
where B = −pI .
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(d)
∂αw

∂t
=

∂(1− αa)

∂t
= −∂αa

∂t

Will still get same form:
∂ew
∂t

= −pI
∂Vw

∂t

(e) Closure is provided by volume fraction:

αa + αw = 1

(f)
αaρaVa + αwρwVw = 1

(g) Stiffened gas EoS:

p = (γ − 1)ρε− γp∞ ⇒ ew =
pw + γwp∞,w

γw − 1
Vw

ew(p, Vw) = e0w(p
0
w, V

0
w)− p(Vw − V 0

w)

p+ γwp∞,w

γw − 1
Vw =

p0w + γwp∞,w

γw − 1
V 0
w − p(Vw − V 0

w)

�p+ γwp∞,w + (γw��−1)p

γw − 1
Vw =

p0w + γwp∞,w + (γw − 1)p

γw − 1
V 0
w

Vw =
p0w + γwp∞,w + (γw − 1)p

γwp∞,w + γwp
V 0
w

(h) p is the relaxed pressure - the equilibrium state of the two initial pressures p1 and p2.

How does it model cavitation? This process assumes that the two pressures obtained from
the evolution step of the compressible equations then instantaneously relax, pw = pa. Then,
solve for the necessary cavitation behaviour that allows for this redistribution of mass from one
phase to the other.

3.3 Q3

3. Same question as 2018-19 (MOCK) Q3. Link
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4 2020-21 (EXAM)

4.1 Q1

1. (a) In sharp interface methods, one needs a technique to identify the location of a material inter-
face, and use this to split the computational domain into two or more regions.

Explicit representation: one explicitly writes down the points that belong to the interface.

(x− x0)
2 + (y − y0)

2 + (z − z0)
2 = r2

Implicit representation: defines the interface as the isocontour of some function ϕ.

ϕ = (x− x0)
2 + (y − y0)

2 + (z − z0)
2 − r2

• Sometimes, knowing what side of the interface you are and how far from it is good enough.

• Merging and splitting happens trivially, without worrying about sub-cell scale behaviour.

(b) Challenges with explicit boundaries:

• Challenging to map a function to an arbitrary surface.

• If an interface becomes stretched, very difficult to work out if it is very thin, or broken.

(c) SDF: a function where the slope in the normal direction is unity.

|∇ϕ| = 1

The absolute value of the function |ϕ| gives you the shortest distance to the zero-contour.

(d) • ϕ is advected using interface material velocity.

• However, this velocity is not constant in space and can generate non-linear behaviour.

• This causes ϕ to become too smeared or too steep.

• If ϕ becomes too steep and resemble a discontinuity, the non-conservative method use for
evolving ϕ fails, resulting in the interface being in the wrong position.

• If ϕ becomes too smeared, it is easy to introduce errors into the interface with any small
errors in the update such as round-off error.

• Returning ϕ to a signed distance function prevents all these from happening.

(e) Expand and square |∇ϕ| = 1 to give (∂xϕ)
2+(∂yϕ)

2+(∂zϕ)
2 = 1. Approximate the derivative

using first-order difference. We try to get the approximated ϕ̂i,j,k for the current cell. ϕx =
min(ϕi+1,j,k, ϕi−1,j,k) for positive level set and ϕx = max(ϕi+1,j,k, ϕi−1,j,k) for negative level set.
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(f) The equation is an intersection between an ellipse at (ϕx, ϕy, ϕz) with semi-axis of lengths ∆x,
∆y, ∆z with a line x = y = z. If the ellipse is too displaced from the origin, the line might
not intersect the ellipse, and we fail to get a solution. Thus, we can try to remove the largest
of ϕx, ϕy, ϕz values to bring the ellipse closer to the origin and reduce the dimension by one.
Repeat one more time if still no real root.

(g) For fast sweeping, we know there are only 2*dimension sweeps to take. However, the iterative
method involves solving an equation in fictitious time for ‘enough’ time steps. It is unclear
what enough is, but will always be more than is needed for fast sweeping.

Also, iterative method requires storing a gradient of the level set for the update, whereas fast
sweeping is a single operation.

(h) Constant extrapolation (in the normal direction) is the solution to a boundary-value problem:

n̂ ·∇u = 0

Can also be written as:
∇ϕ

|∇ϕ|
·∇u = 0

(i) (
∆ϕx

∆x

∆ϕy

∆y
∆ϕz

∆z

)
·
(

ûi,j,k−ux

∆x

ûi,j,k−uy

∆y

ûi,j,k−uz

∆z

)
= 0

ûi,j,k

(
∆ϕx

∆x2
+

∆ϕy

∆y2
+

∆ϕz

∆z2

)
=

ux∆ϕx

∆x2
+

uy∆ϕy

∆y2
+

uz∆ϕz

∆z2

ûi,j,k =
ux

∆ϕx

∆x2 + uy
∆ϕy

∆y2
+ uz

∆ϕz

∆z2

∆ϕx

∆x2 + ∆ϕy

∆y2
+ ∆ϕz

∆z2

ux,y,z are values of u from the appropriate cells chosen for ϕx,y,z.
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4.2 Q2

2. (a) Mixture rules:
ρ = α1ρ1 + α2ρ2

ρv = α1ρ1v1 + α2ρ2v2

E = α1E1 + α2E2

(b) E = ρε+ 1
2
ρv2.

E = α1ρ1ε1 + α2ρ2ε2 +
1

2
(α1ρ1v

2
1 + α2ρ2v

2
2)︸ ︷︷ ︸

KEmix

ε =
E −KEmix

ρ
=

α1ρ1ε1 + α2ρ2ε2
ρ

̸= α1ε1 + α2ε2

(c) Instantaneous pressure relaxation: µ → ∞ and p1 = p2 = p. Instantaneous velocity relaxation:
λ → ∞ and v1 = v2 = v. We now only have a single pressure and velocity for the system.

Consider the momentum equation:

∂α1ρ1v

∂t
+

∂α1(ρ1v
2 + p)

∂x
= pI

∂α1

∂x
and

∂α2ρ2v

∂t
+

∂α2(ρ2v
2 + p)

∂x
= pI

α2

x

Combine them:

∂

∂t
[(α1ρ1 + α2ρ2︸ ︷︷ ︸

ρ

)v] +
∂

∂x
[(α1ρ1 + α2ρ2︸ ︷︷ ︸

ρ

)v2 + (α1 + α2︸ ︷︷ ︸
1

)p] = pI
∂

∂x
(α1 + α2︸ ︷︷ ︸

1

)

∂ρv

∂t
+

∂(ρv2 + p)

∂x
= 0

Consider the energy equation:

∂α1E1

∂t
+

∂α1(E1 + p)v

∂x
= pIvI

∂α1

∂x
and

∂α2E2

∂t
+

∂α2(E2 + p)v

∂x
= pIvI

∂α2

∂x

Combine them:

∂

∂t
[(α1E1 + α2E2︸ ︷︷ ︸

E

)v] +
∂

∂x
[(α1E1 + α2E2︸ ︷︷ ︸

E

)v2 + (α1 + α2︸ ︷︷ ︸
1

)pv] = pIvI
∂

∂x
(α1 + α2︸ ︷︷ ︸

1

)

∂E

∂t
+

∂(E + pv)

∂x
= 0

(d) For ideal gas:
p = (γ − 1)ρε

So,

ξK =
∂ρKεK
∂p

∣∣∣
ρL

=
1

γK − 1
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(e)

ρε+
1

2
ρv2 = α1ρ1ε1 + α2ρ2ε2 +

1

2
(α1ρ1v

2
1 + α2ρ2v

2
2)

⇒ ρε = α1ρ1ε1 + α2ρ2ε2

d(ρε) = d(α1ρ1ε1 + α2ρ2ε2)

= ρ1ε1dα1 + ρ2ε2dα2 + α1d(ρ1ε1) + α2d(ρ2ε2)

= ρ1ε1dα1 + ρ2ε2dα2 + α1
��

���∂ρ1ε1
∂ρ1

dρ1 + α1
∂ρ1ε1
∂p

dp+ α2
��

���∂ρ2ε2
∂ρ2

dρ2 + α2
∂ρ2ε2
∂p

dp

= ρ1ε1dα1 + ρ2ε2dα2 +
α1

γ1 − 1
dp+

α2

γ2 − 1
dp

(f) (
α1

γ1 − 1
+

α2

γ2 − 1

)
dp = d(ρε)− ρ1ε1dα1 − ρ2ε2dα2

(α1ξ1 + α2ξ2)dp = d(ρε)− ρ1ε1dα1 + ρ2ε2dα1

ξdp = d(ρε)− (ρ1ε1 − ρ2ε2)dα1

dp =
1

ξ
d(ρε)− 1

ξ
(ρ1ε1 − ρ2ε2)dα1

(g) Identify terms:
∂p

∂ρε
=

1

ξ

∂p

∂ρ1α1

=
∂p

∂ρ2α2

= 0

c2s =
1

ξ
h =

1

ξ

(
α1ρ1
ρ

h1 +
α2ρ2
ρ

h2

)
∴ c2s =

1

ξ
(Y1h1 + Y2h2)

(h)

p = (γK − 1)ρKεK and εK =
p

ρK(γK − 1)

hK = εK + (γK − 1)εK

= γKεK

=
γKp

ρK(γK − 1)

=
c2s,K

γK − 1

= ξKc
2
s,K

c2s =
1

ξ

(
Y1ξ1c

2
s,1 + Y2ξ2c

2
s,2

)
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4.3 Q3

3. (a)
S(u)E = δ(x− xS)v · fS

(b) Replace the delta function with a smeared delta function of finite width. The interface now
occupies a finite volume, hence is a volume integral. It is necessary because it is hard to eval-
uate a true delta function on a discretised domain. We probably do not directly know xS, and
we need to employ interpolation to find it which can be expensive.

”Since δ(x) = 0 almost everywhere, it seems unlikely that any standard numerical approxima-
tion based on sampling will give a good approximation to this integral. This is why we turned
to a first-order smeared out approximation of δ(x).”

Approximation: assumes the interface itself is modelled as smeared as well.

(c) Properties of smeared delta function:

• Integral under smeared delta function is 1.

• Centred at x = xS.

• Appropriate choice of ϵ means delta function can cover more than one grid cell. Typically,
ϵ = 1.5∆x.

• The value and derivative of the function becomes zero at the edges, |x − xs| = ϵ. Similar
to the original Dirac-delta function.

Idea: Surface tension forces acting on the interface are transformed to volume forces in regions
near the interface via smeared delta functions, leading to ideally discontinuous interfacial jump
conditions being modelled as smooth.

Effect: the numerical solution becomes continuous at the interface even if the jump conditions
imply that the solution should be discontinuous. For example, surface tension forces induce
a discontinuous pressure across a fluid-fluid interface, this method would smear the pressure
profile into a numerically continuous function.

(d) σ is the surface tension with units of force per unit length. κ is the curvature. n is the normal
vector to the surface.

(e) Start with momentum equation,

∂ρv

∂t
+

∂

∂x
(ρv2 + p) = δ(x− xS)σκn
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Since v = 0,
∂p

∂x
= δ(x− xS)σκ

Integrating w.r.t. x,
∆p = σκ

(f) Curvature of the interface must be constant.

(g) Difficulties of diffuse interface approach:

• Diffuse interface method do not have distance information, it is more difficult to obtain the
location of the interface xS, and its normal and curvature from just the volume fraction.

• Diffuse interface may not be the same width as the smeared delta function.

(h)

n̂ =
∇ϕ

|∇ϕ|
and κ = ∇ · n̂

(i) Modelling surface tension effects using level set function:

• Interface is now sharp, cannot use smeared delta function any more.

• To deal with a sharp interface, use the ghost fluid method (GFM), specifically a
Riemann-problem based GFM, where the intermediate pressure is no longer continuous
across the interface. Instead, there is a pressure jump of:

∆p = σκ , p∗R = p∗L +∆p

• We incorporate the pressure jump into an exact Riemann solver. We then solve the
following Riemann problem:

fL(p
∗
L,uL) + fR(p

∗
L + σκ,uR) + ∆v = 0

• After finding p∗L, we can find p∗R.

• The velocity is still continuous.

• Also works with linearised Riemann solvers for complex material interfaces.
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5 2021-22 (EXAM)

5.1 Q1

1. (a) • The exact location of the boundary is not known on a discretised mesh, but we do know
which side we are on.

• Instead it is considered as the zero-contour of a scalar field that exists across the entire
physical domain.

(b) Interface is a vertical line,

x = 0.5

⇒ ϕ(x, y) = x− 0.5

Interface is a sloped line:

y =
3

4
x− 1

8

⇒ ϕ(x, y) = y − 3

4
x− 1

8

Powerful geometrical tools for level set method (implicit):

• The sign of ϕ tells us which side of the interface we are at.

• If ϕ1 and ϕ2 are two different implicit functions and they are convex, then ϕ(x) =
min(ϕ1, ϕ2) represents the union of the interior regions of ϕ1 and ϕ2. ϕ(x) = max(ϕ1, ϕ2)
represents the intersection of the interior regions of ϕ1 and ϕ2. ϕ(x) = max(ϕ1,−ϕ2)
represents the region obtained by subtracting the interior of ϕ2 from the interior of ϕ1.

• If ϕ is concave function. min represents intersect and max represents union.
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Interface is a triangle in (x, y) space. In (x, y, ϕ) space, it is formed by the intersection of three
planes, making a pyramid:

Geometry:
lines: {y = 0.2 , y = x , y = −x+ 1}

Level set function is found by minimising the distance to the interface e.g. triangular in this
case. The lecture notes gave an example for a square.

We separate the interface into 7 regions (1 interior, 3 edge and 3 corner) by drawing perpen-
dicular lines to the edges at the corners.

Edges: {ϕ1 = y − 0.2 , ϕ2 = x− y , ϕ3 = 1− x− y}

Corners:
{
ϕ4 =

√
(x− 0.5)2 + (y − 0.5)2 , ϕ5 =

√
(x− 0.8)2 + (y − 0.2)2,

ϕ6 =
√

(x− 0.2)2 + (y − 0.2)2
}

After defining all the corners and edges, we piece together the ϕ function by regions:

ϕ7 =



min(ϕ1, ϕ2, ϕ3) , if ϕ1 > 0 , ϕ2 > 0 , ϕ3 > 0

ϕ4 , if ϕ2 < 0 , ϕ3 < 0

ϕ2 , if ϕ2 < 0 , 0 < ϕ3 <
√
0.32 + 0.32

ϕ6 , if ϕ2 < 0 , ϕ3 >
√
0.32 + 0.32

ϕ3 , if ϕ3 < 0 , 0 < ϕ2 <
√
0.32 + 0.32

ϕ5 , if ϕ3 < 0 , ϕ2 >
√
0.32 + 0.32

ϕ1 , if ϕ1 < 0 , 0.2 < x < 0.8

ϕ6 , if ϕ1 < 0 , x < 0.2

ϕ5 , if ϕ1 < 0 , x > 0.8
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Interface is 2 identical triangles:

lines: {y = 0.2 , y = x , y = −x+ 1}
Translate in positive x and y-direction by 1 unit, so y → y − 1 and x → x− 1

lines: {y = 1.2 , y = x , y = −x+ 3}

The level set for a single pyramid is given in part (iii), ϕ7. After replacing y → y − 1 and
x → x − 1, we get a new level set function for the other pyramid, ϕ8. Since they are concave
functions, the max of them gives the union of their interior regions.

ϕ = max(ϕ7, ϕ8)

(c)

n̂ =
∇ϕ

|∇ϕ|
and κ = ∇ · n̂

(d) General form of Hamilton-Jacobi equation:

∂ϕ

∂t
+H(∇ϕ) = 0

(e) Normal vector driven-velocity (v = Vnn̂) is fine, curvature driven (v = κn̂) is not.

∂ϕ

∂t
+ Vn|∇ϕ| = 0 and

∂ϕ

∂t
+

[
∇ ·

(
∇ϕ

|∇ϕ|

)]
|∇ϕ| = 0

The curvature depends on the second derivative of ϕ, so it is not in the form of a HJ equation.
On the other hand, normal-vector driven-velocity depends only on first derivative.

(f) Why can upwinded methods be used for evolving the level set function describing
an interface between two materials, but not for general Hamilton-Jacobi equations?

The idea is that for upwind methods to make sense, you need an idea of “direction” of infor-
mation travel.

• Level set equation is:
∂ϕ

∂t
+ v ·∇ϕ = 0

where v is the material velocity which determines the direction of flow.

• This means we always know which direction information travels in for a given cell. Hence,
we can use upwinded schemes.

• For HJ equation, H(∇ϕ) is a general function of the gradient of ϕ, there is no concept of
a ‘direction of flow‘.
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5.2 Q2

2. (a) Assumptions across interface:

• Velocity equilibrium i.e. velocity is continuous.

• Pressure equilibrium i.e. pressure is continuous.

• Constant entropy for each material individually.

(b) Method:

• Pressure and velocity are copied from the real material to the ghost fluid cell.

•
s = cv ln p+ cp ln v + const (note the symmetry)

where γ = cp
cv

• Constant entropy means:

pvγ =
p

ργ
= const

• For real material cell adjacent to interface xI and ghost material xG:

pI
ργII

=
pG
ργIG

⇒ ρG = ρI

(
pG
pI

)1/γI

Both the real and ghost cell are part of the same material so they have the same γI . pG is
copied from the real cell.

(c) In 2D/3D:

• The copying of pressure is unchanged.

• Now, only the normal velocity is continuous across the interface, which needs to be com-
puted and copied into the ghost cell.

vn = n̂ · v =
∇ϕ

|∇ϕ|
· v

• The tangential velocity jump across the interface.

vt = v − vnn̂

• An extrapolation technique needs to be used for entropy and the tangential velocity vector.

• Finally, the density can be found, and the total velocity obtained from combining the
normal velocity and the extrapolated tangential velocity.

(d) How many ghost cells need setting? (1 more than the numerical stencil).

• At least 3.

• 2 ghost cell for MUSCL-Hancock scheme.

• But over the course of a time step, the motion of the interface can cause a ghost cell to
become a real cell.

• To ensure this cell has been updated using reasonable values, we need to provide a good
state for the third cell deep.
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(e) GFM dynamic boundary condition for contact discontinuity, rarefaction and shock:

• Contact discontinuities - the ghost fluid method specifies the exact behaviour.

• Rarefaction - within a rarefaction, (normal) velocity and pressure are continuous, and
entropy is constant - GFM gives suitable conditions.

• Shock waves - entropy, pressure and velocity all jump across a shock, GFM fails.

(f) Strong shock wave, large density gradients, very different material, incomplete EoS (entropy
not available).

In practice, shock waves are often numerically smeared, hence there will be a continuous change
in entropy which is captured reasonably well.

(g) Modified ghost fluid method:

• Sometimes the original GFM predicts a reflected rarefaction when there should be a re-
flected shock wave.

• Looking at Riemann problem solution can give information about when this would happen.

• It uses characteristic equations to approximate RP solution.

Explicit simplified interface method:

• Original GFM cannot handle entropy gradients across the interface.

• Physically, ESIM allows GFM to deal with temperature gradients.

• ESIM uses jump conditions of derivatives to allow linear extrapolation of entropy.

Real ghost fluid method:

• Similar to modified GFM, solves a Riemann problem to obtain the solution.

• In this case, the entire intermediate state of the mixed-material RP is computed.

• This ensures that we have a thermodynamically reasonable state within the ghost cell.

(h) Should a GFM be applied before or after the time step is computed?
Before. Since we might need to make a ghost fluid cell a real cell due to interface moving, we
need to ensure the time step allows for suitable evolution of this cell.

(i) Should a GFM be applied before or after the domain B.C. are computed?
Either. At material boundaries, there will always be loss of information as to the shape of the
interface. This means that conditions will always be a bit inaccurate.

How do you validate a Ghost Fluid Method? Shock tube test
If a shock wave hits a material interface, we expect:

(a) Transmitted shock wave

(b) Reflected rarefaction

(c) Advection of interface
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5.3 Q3

3. (a) Conservation errors:

Sharp interface methods

• The level set equation is not in C. form, but it is a HJ equation, so no C. errors.

• Error comes from having only one material in a computational cell.

• When the interface moves, a cell can change from one material to another.

• As these cells do not have the same mass, there is mass loss or gain every time this happens.

• As a result, this slightly change the state near the interface and introduce error.

• But it does not result in incorrect shock wave placement, as each material is still evolved
with a conservative equation.

• The errors can be reduced with resolution too.

• Also, as each computational cell is only made of a single material, thin regions can disap-
pear entirely. This will completely change behaviour as wave interactions are altered.

Diffuse interface methods

• The volume fraction equation is not written in C. form, and other equations might not be
written in C. form, such as the energy equation in the cavitation model.

• This means that there might be small conservation errors as a shock wave passes over the
interface.

• If the interface is sharp (i.e. α is only slightly smeared), error only affects a very small
region of the domain. If volume fraction is flat, there is no practical effect.

• Increasing resolution reduces smearing, as well as error.

• Sharpening techniques like THINC, exists to further minimise these errors.

• True mixture interface might suffer worse errors.

(b) Can combine with conservation of mass to give:

∂ρϕ

∂t
+∇ · (ρϕv) = 0

and treated as an advected scalar. But this requires a discontinuity at ϕ = 0. As a result, it
introduces additional error at the only part of the domain we want accurate information from
the level set function.

(c)
∂ϕ

∂t
+ vx

∂ϕ

∂x
= 0

Differentiate both sides w.r.t to x and let u = ∂ϕ
∂x
,

∂

∂t

(
∂ϕ

∂x

)
+

∂

∂x

(
vx

∂ϕ

∂x

)
= 0 ⇒ ∂u

∂t
+

∂(vxu)

∂x
= 0

It is in conservative form, where f(u) = vxu.
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(d) The level set equation is the integral solution to a conservation law. This means ϕ cannot
generally develop a discontinuity unless the corresponding conservation law develops a delta
function, which is physically unlikely. Thus, solution ϕ are typically smooth.

(e) • l refers to liquid phase, g refers to gaseous phase.

• α is volume fraction.

• ρ, p, ε are density, pressure and specific internal energy for each phase.

• vx is the single v-x velocity for the mixture.

• pI is the interfacial pressure.

• µ is the pressure relaxation constant.

(f) Add another correction evolution equation to the cavitation model:

∂E

∂t
+

∂(E + p)vx
∂x

= 0

where E is total energy and p is the mixture pressure. This allows conservation errors in specific
internal energy to be ”corrected”.

(g) The conservatively evolved total energy and the stiffened gas mixture rule is used to compute
a mixture pressure using the equation given. Then, for each phase, the specific internal energy
is computed using this mixture pressure:

εi = εi

(
pmix,

(αρ)i
αi

)
This term then replaces the specific internal energies in the two energy evolution equations
(correction applied).

(h) ∑
i

αi

γi − 1

Volume weighted average of 1
γ−1

. ∑
i

=
αiγip∞,i

γi − 1

Weighted average of γp∞.

It comes from rearranging stiffened gas to obtain ρε, and determining suitable mixture rules
for the various quantities. It has some similarity to the weighting in the mixture sound speed
in Allaire model.

Allaire model sound speed weighting:

c2s =
∑
i

Yiξic
2
s,i

ξ
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6 2023-24 (EXAM)

6.1 Q1

1. Same question as 2024-25 (Mock) Q1. Link

6.2 Q2

2. (a) ρ and E are conserved quantities, their mixture rule is volume-weighted average:

ρ = α1ρ1 + α2ρ2

E = α1E1 + α2E2

(b) No, not required, they can be derived from mixture rules of conserved quantities.

v =
ρv

ρ
=

α1(ρ1v1) + α2(ρ2v2)

ρ
=

α1ρ1
ρ

v1 +
α2ρ2
ρ

v2 = Y1v1 + Y2v2

p = (γ − 1)

(
E − 1

2

(ρv)2

ρ

)
(c) For α1:

∂α1

∂t
+ v

∂α1

∂x
= 0

For ρ1:
∂α1ρ1
∂t

+
∂α1ρ1v

∂dx
= 0

α1
∂ρ1
∂t

+
�

�
��

ρ1
∂α1

∂t
+ α1

∂ρ1v

∂x
+

�
�
�

��
ρ1v

∂α1

∂x
= 0

∂ρ1
∂t

+
∂ρ1v

∂x
= 0

∂ρ1
∂t

+ ρ1
∂v

∂x
+ v

∂ρ1
∂x

= 0

Similar for ρ2,
∂ρ2
∂t

+
∂ρ2v

∂x
= 0

∂ρ2
∂t

+ ρ2
∂v

∂x
+ v

∂ρ2
∂x

= 0

For v:
∂ρv

∂t
+

∂(ρv2 + p)

∂x
= 0

ρ
∂v

∂t
+ v

∂ρ

∂t
+ ρv

∂v

∂x
+ v

∂ρv

∂x
+

∂p

∂x
= 0

v

(
∂ρ

∂t
+

∂ρv

∂x

)
+ ρ

∂v

∂t
+ ρv

∂v

∂x
+

∂p

∂x
= 0
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v
����������(
∂αiρi
∂t

+
∂αiρiv

∂x

)
+ ρ

∂v

∂t
+ ρv

∂v

∂x
+

∂p

∂x
= 0

∂v

∂t
+ v

∂v

∂x
+

1

ρ

∂p

∂x
= 0

(d)
∂E

∂t
+

∂(E + p)v

∂x
= 0

∂

∂t

(
ρε+

1

2
ρv2
)
+

∂

∂x

(
ρεv +

1

2
ρv3 + pv

)
= 0

�
�
�

ε
∂ρ

∂t
+ ρ

∂ε

∂t
+

�
�
�
�1

2
ρv

∂v

∂t
+

�
�
�
�1

2
v
∂ρv

∂t
+ ρv

∂ε

∂x
+

�
�
�

ε
∂ρv

∂x
+

�
�

�
��1

2
v
∂ρv2

∂x
+

�
�
�

��1

2
ρv2

∂v

∂x
+ p

∂v

∂x
+
�
�
�

v
∂p

∂x
= 0

1

2
v
�����������[
∂ρv

∂t
+

∂ρv2

∂x
+

∂p

∂x

]
+ ε

�
���

���
[
∂ρ

∂t
+

∂ρv

∂x

]
+

1

2
ρv

�����������[
∂v

∂t
+ v

∂v

∂x
+

1

ρ

∂p

∂x

]
+ ρ

∂ε

∂t
+ ρv

∂ε

∂x
+ p

∂v

∂x
= 0

ρ
∂ε

∂t
+ ρv

∂ε

∂x
+ p

∂v

∂x
= 0

Consider p = p(α1, α1ρ1, α2ρ2, ρε),

Taking derivative w.r.t. t:

∂p

∂t
=

∂p

∂α1

∂α1

∂t
+

∂p

∂α1ρ1

∂α1ρ1
∂t

+
∂p

∂α2ρ2

∂α2ρ2
∂t

+
∂p

∂ρε

∂ρε

∂t

Taking derivative w.r.t. x:

∂p

∂x
=

∂p

∂α1

∂α1

∂x
+

∂p

∂α1ρ1

∂α1ρ1
∂x

+
∂p

∂α2ρ2

∂α2ρ2
∂x

+
∂p

∂ρε

∂ρε

∂x

∂p

∂t
+ v

∂p

∂x
=

∂p

∂α1�
��������
(
∂α1

∂t
+ v

∂α1

∂x

)
+

∂p

∂α1ρ1

(
∂α1ρ1
∂t

+ v
∂α1ρ1
∂x

)
+

∂p

∂α2ρ2

(
∂α2ρ2
∂t

+ v
∂α2ρ2
∂x

)
+

∂p

∂ρε

(
∂ρε

∂t
+ v

∂ρε

∂x

)

=
∂p

∂α1ρ1

(
���������∂α1ρ1
∂t

+
∂α1ρ1v

∂x
− α1ρ1

∂v

∂x

)
+

∂p

∂α2ρ2

(
���������∂α2ρ2
∂t

+
∂α2ρ2v

∂x
− α2ρ2

∂v

∂x

)
+

∂p

∂ρε

(
ρ
∂ε

∂t
+ ε

∂ρ

∂t
+ ρv

∂ε

∂x
+ vε

∂ρ

∂x

)

=
∂p

∂α1ρ1

(
−α1ρ1

∂v

∂x

)
+

∂p

∂α2ρ2

(
−α2ρ2

∂v

∂x

)
+

∂p

∂ρε

(
ε
∂ρ

∂t
+ vε

∂ρ

∂x
− p

∂v

∂x

)
=

∂p

∂α1ρ1

(
−α1ρ1

∂v

∂x

)
+

∂p

∂α2ρ2

(
−α2ρ2

∂v

∂x

)
+

∂p

∂ρε

(
�������
ε
∂ρ

∂t
+ ε

∂ρv

∂x
− ρε

∂v

∂x
− p

∂v

∂x

)
=

∂p

∂α1ρ1

(
−α1ρ1

∂v

∂x

)
+

∂p

∂α2ρ2

(
−α2ρ2

∂v

∂x

)
+

∂p

∂ρε

(
−ρh

∂v

∂x

)
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Hence,

∂p

∂t
+ v

∂p

∂x
+

(
ρh

∂p

∂ρε
+ α1ρ1

∂p

∂α1ρ1
+ α2ρ2

∂p

∂α2ρ2

)
∂v

∂x
= 0

(e) h is the enthalpy. From thermodynamics, h = u+ pv.

(f) It can be interpreted as the mixture sound speed.

(g) Stiffened gas EoS:
p = (γ − 1)ρε− γp∞

Since material 1 and material 2 are identical, ρ1 = ρ2 = ρ, and p is independent of α1ρ1 and
α2ρ2,

ρh
∂p

∂ρε
+ α1ρ1

∂p

∂α1ρ1
+ α2ρ2

∂p

∂α2ρ2
= ρh

∂p

∂ρε

= ρh(γ − 1)

= (γ − 1)(ρε+ p)

= (γ − 1)

(
p+ γp∞
γ − 1

+ p

)
= (γ − 1)

(
p+ γp∞ + γp− p

γ − 1

)
= ρ

γ(p+ p∞)

ρ
= ρc2s

(h) Incorporating additional physics into diffuse interface model - compaction
Compaction is compressing one material in a volume more than the other.

For example, in a water-air mixture, if the pressure in a cell increase, we would expect more
compression of the air than the water. This means that volume fraction of water should
increase because of pressure changes, not just advection with velocity. This can be captured
by including the compaction source term in the volume fraction equation:

∂α1

∂t
+ v

∂α1

∂x
+K∇ · v = 0

where:

K = α1α2
ρ1c

2
1 − ρ2c

2
2

α1ρ1c21 + α2ρ2c22

(i) Drawbacks of Allaire model over other diffuse interface models.

• It is constructed assuming a sharp interface, but treated in a diffuse manner.

• Ideal gas will start mixing and the assumption by Allaire model is no longer accurate.

• However, it is timescale dependent. Over very short times, this assumption holds, since
moving would be minimal.
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6.3 Q3

3. (a) Take x-derivative:
∂

∂x

(
∂ϕ

∂t

)
+

∂

∂x
H

(
∂ϕ

∂x

)
= 0

∂

∂t

(
∂ϕ

∂x

)
+

∂

∂x

[
H

(
∂ϕ

∂x

)]
= 0

∂u

∂t
+

∂H(u)

∂x
= 0

where u = ∂ϕ
∂x
.

(b) Combining level set evolution with conservation of mass:

ρ
∂ϕ

∂t
+ ρv

∂ϕ

∂x
+ ϕ

∂ρ

∂t
+ ϕ

∂ρv

∂x
= 0

∂ρϕ

∂t
+

∂ρϕv

∂x
= 0

(c) • Argument why Hamilton-Jacobi is a good form.
Part (a) is conservation law for spatial derivative of ϕ. It shows that the HJ equation is an
integral solution to a conservation law. The level set function will only have discontinuity
if the solution from the conservation law is a delta function. However, physically, we are
unlikely to get a delta function. This means we can solve the HJ directly, without worrying
about discontinuities arising from smooth initial data.

• Part (b) is a way to put the level set equation in conservative form for material interfaces.
Density is discontinuous between liquid and gas i.e. contact discontinuity, so we get un-
necessary smearing error at the interface, which is the only place we need the method to
be accurate.

And the whole point of the level set method is to identify the motion of the interface
between two materials.

• It is far more accurate to use a non-conservative, non-discontinuous form of the equation
that automatically introduce a discontinuity there and revert to first-order methods.

(d) Reinitialisation returns a level set function to a signed-distance function, while maintaining the
position of the zero-contour. Advection of ϕ with non-constant material velocity may cause
it to become too smeared or too steep. If too steep, it resembles a discontinuity and our
non-conservation method fails. If too smeared, it is easy to introduce errors.

(e) Reinitialisation involves solving:
|∇ϕ| = 1

which is a form of Eikonal equation.

• It is a steady state hyperbolic equation. For the level set equation, information propagates
out from the boundary with speed 1.

• It has applications in describing path of light in complex medium.
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(f) τ is the fictitious time. We achieve reinitialisation by evolving a solution to a steady state.
At steady state, the time derivative vanishes, hence we have found a solution that satisfies the
Eikonal equation.

(g) Iterative reinitialisation

• We approximate the derivatives to first-order, since we are aiming for a first-order numerical
method.

• The PDE will evolve to a steady state provided the slopes of ϕ are always calculated in
the upwind direction (remember: information propagate outward from the interface).

• The sign of sgn(ϕ)∂ϕ
∂x

tells us which is the upwind direction.

ϕx =

{
ϕ−
x,i =

ϕi,j−ϕi−1,j

∆x
, if sgn(ϕ)∂ϕ

∂x
≥ 0

ϕ+
x,i =

ϕi+1,j−ϕi,j

∆x
, if sgn(ϕ)∂ϕ

∂x
< 0

• Similarly for the y-direction, the sign of sgn(ϕ)∂ϕ
∂y

tells us which is the upwind direction.

ϕy =

{
ϕ−
y,j =

ϕi,j−ϕi,j−1

∆y
, if sgn(ϕ)∂ϕ

∂y
≥ 0

ϕ+
y,j =

ϕi,j+1−ϕi,j

∆y
, if sgn(ϕ)∂ϕ

∂y
< 0

•
ϕn+1
i,j − ϕn

i,j

∆t
+

sgn(ϕ)√
ϕ2
x + ϕ2

y

(
ϕ2
x + ϕ2

y

)
= sgn(ϕ)

ϕn+1
i,j − ϕn

i,j

∆t
= sgn(ϕ)

[
1−

ϕ2
x + ϕ2

y√
ϕ2
x + ϕ2

y

]

ϕn+1
i,j = ϕn

i,j +∆t× sgn(ϕ)

[
1−

ϕ2
x + ϕ2

y√
ϕ2
x + ϕ2

y

]
• Perform this iteration until a steady state is obtained:

|ϕn+1
i,j − ϕn

i,j| < ϵ

where ϵ is a self-defined small number.

(h) Using second-order or higher method will increase spatial accuracy by providing better numer-
ical approximation to ϕ−

x and ϕ+
x .

• Central differencing is unstable with forward Euler time discretisation and the usual CFL
condition with ∆t ∼ ∆x.

• ENO/WENO

• We can achieve stability with a higher-order temporal discretisation such as third-order
accurate Runge-Kutta method

Yes, it is used in practice as it is easy to code and can be extended to higher orders easily.
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7 2024-25 (Mock)

7.1 Q1

1. (a) Zero-strength left-moving wave, same state as the left state:

w∗
L = (1, 2, 4)T

(b)

∂

∂t

 ρ
ρv
E


︸ ︷︷ ︸

u

+
∂

∂x

 ρv
ρv2 + p
(E + p)v


︸ ︷︷ ︸

f

= 0

S is the shock speed.

(c)

E =
p

γ − 1
+

1

2
ρv2 = p+

1

2
ρv2

Write RH conditions in vector form: 2ρ∗R
4ρ∗R + 4

(8 + 1
2
· 4ρ∗R) · 2

−

 −2ρR
4ρR + 1

(2 + 1
2
· 4ρR) · (−2)

 = S

 ρ∗R
2ρ∗R

4 + 1
2
· 4ρ∗R

−

 ρR
−2ρR

1 + 1
2
· 4ρR


 2(ρ∗R + ρR)

4(ρ∗R − ρR) + 3
4(4 + ρ∗R + 1 + ρR)

 = S

 ρ∗R − ρR
2ρ∗R + 2ρR

3 + 2ρ∗R − 2ρR


 2(ρ∗R + ρR)
4(ρ∗R − ρR) + 3
4(5 + ρ∗R + ρR)

 = S

 ρ∗R − ρR
2ρ∗R + 2ρR

3 + 2ρ∗R − 2ρR


From (1):

S = 2
ρ∗R + ρR
ρ∗R − ρR

Substitute S into (2):

4(ρ∗R − ρR) + 3 = 2
ρ∗R + ρR
ρ∗R − ρR

· 2(ρ∗R + ρR)
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4(ρ∗R − ρR)
2 + 3(ρ∗R − ρR) = 4(ρ∗R + ρR)

2

−8ρ∗RρR + 3(ρ∗R − ρR) = 8ρ∗RρR

3ρ∗R − 3ρR = 16ρ∗RρR

ρ∗R(3− 16ρR) = 3ρR

ρ∗R =
3ρR

3− 16ρR

Substitute S into (3):

4(5 + ρ∗R + ρR) = 2
ρ∗R + ρR
ρ∗R − ρR

(3 + 2ρ∗R − 2ρR)

20(ρ∗R − ρR) +(((((((((((
4(ρ∗R + ρR)(ρ

∗
R − ρR) = 6(ρ∗R + ρR) +(((((((((((

4(ρ∗R + ρR)(ρ
∗
R − ρR)

14ρ∗R = 26ρR

ρ∗R =
13

7
ρR

Hence,
13

7
ρR =

3ρR
3− 16ρR

21

13
= 3− 16ρR

ρR =
1

16

(
3− 21

13

)
=

9

104

Then,

ρ∗R =
9

56

w∗
R =

(
9

56
, 2, 4

)
And,

S =
20

3

(d) GFM provides dynamics boundary conditions at the interface between two materials, at which
the interface is sharp and implicitly represented.
Advantages: allows for an interface between two material with different equation of state.
Single-material solution might introduce error from smearing.
Disadvantages: ...

(e) Pressure and velocity is copied.
pG = 1

Constant entropy extrapolation, from s = cv ln p+ cp ln v + const = cv ln p+ γcv ln v + const:

p

ργ
= const

pG
ργG

=
pI
ργI
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ρG = ρI

(
pG
pI

)1/γ

Ghost fluid of the left material to the right of the interface:

ρG,L = 1

(
1

4

)1/2

=
1

2

wG,L =

(
1

2
,−2, 1

)
Ghost fluid of the right material to the left of the interface:

ρG,R =
1

10

(
4

1

)1/2

=
1

5

wG,R =

(
1

5
, 2, 4

)
(f) For 1

10
, we get two shocks, the basic ghost fluid method would fail to give a correct solution as

entropy jumps across the shock, violating the assumption of the basic GFM.

For 1
12
, we get left-moving rarefaction and right-moving shock, it gives correct behaviour for

the rarefaction but not the shock wave.

(g) Yes, the exact Riemann solver can give the correct solution for shock wave.

(h) No, HLL does not include contact discontinuity which needs to be included.

7.2 Q2

2. Same question as 2022-23 (MOCK) Q2. Link

7.3 Q3

3. Same question as 2021-22(EXAM) Q3. Link
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8 Appendix

8.1 Allaire Model

It is well known that the seven-equation model is the most complete and general model although it
exhibits a complex wave pattern as a consequence of the source terms nature. Relaxation procedure
are employed to deal with the different length and time scales for velocity and pressure equilibra-
tion. Kapila proposed an asymptotic reduction of the seven equation model under stiff mechanical
relaxation in order to obtain a model with a single velocity and a single pressure. The result is a five
equation model, with a non-conservative volume fraction transport equation, two mass balances, and
one momentum and energy balance equation.

∂α1

∂t
+ u ·∇α1 +K∇ · u = 0

∂α1ρ1
∂t

+∇ · (α1ρ1u) = 0 ,
∂α2ρ2
∂t

+∇ · (α2ρ2u) = 0

∂ρu

∂t
+∇ · (ρu⊗ u+ pI) = 0

∂ρe

∂t
+∇ · [(E + p)v] = 0

However, the five-equation is not closed. A possible way to understand how this missing closure
relation acts in the system is to recognise that it is not possible to compute the pressure p with the
sole knowledge of conserved quantities. The primitive variable formulation to attain closure is by
defining a mixture EoS:

p = p(α1, α1ρ1, α2ρ2, ρε)

Remarks:

• If the volume fraction takes only values 0 or 1, it means it describes a sharp interface. Then,
Equation (1), (2) and (5) are redundant (only 2 of them are independent). The five-equation
model reduces to the four-equation model.

• Always conserves mass.

• The model can be easily extended to treat more than two fluids by adding a mass conservation
equation and a volume fraction advection equation for each new fluid.

Determination of sound speed not trivial

Wood’s formula:
1

ρc2eq
=

α1

ρ1c21
+

α2

ρ2c22

This expression assumes the two phases are fully mixed at the same pressure and temperature. It
is non-monotonic and the mixture equilibrium sound speed can eventually become smaller than the
ones in pure fluid. Sound speed is now undermined. Using this expression for the sound speed cause
oscillations at the interface. We need to identify the correct mixutre sound speed. Link
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Numerical Method Algorithm

1. Build the primitive variable

2. Use MUSCL (or WENO) to reconstruct the primitive variable (linear reconstruction and half-
timestep update).

w̄R
i = wn

i +
1

2
ξ(r)∆i and w̄L

i = wn
i −

1

2
ξ(r)∆i

where ∆i =
1
2
∆i−1/2 +

1
2
∆i+1/2, such that ∆i−1/2 = wn

i −wn
i−1 and ∆i+1/2 = wn

i+1 −wn
i

w̄
R,n+1/2
i = wR

i − 1

2

∆t

∆x
B(wi)ξ(r)∆i and w̄

L,n+1/2
i = wL

i − 1

2

∆t

∆x
B(wi)ξ(r)∆i

where B(wi) is the primitive variable matrix.

3. Build the conserved variables, qR
i and qL

i from the reconstructed primitive variables.

4. Use the adapted HLLC approximate Riemann solver to compute the numerical flux.

fn
i+1/2 = fn

i+1/2

(
q̄R
i , q̄

L
i+1

)

q∗
K =

(
SK − uK

SK − S∗

)


α1K

(α1ρ1)K
(α2ρ2)K
ρKS

∗

EK + (S∗ − uK)
(
ρKS

∗ + pK
SK−uK

)


where:

S∗ =
pR − pL + ρLuL(SL − uL)− ρRuR(SR − uR)

ρL(SL − uL)− ρR(SR − uR)

with S+ = max(|uL|+ cs,L, |vR|+ cs,R) and SL = −S+ , SR = S+

Finally,

fHLLC
i+1/2 =


fL , 0 ≤ SL

fL + SL(q
∗
L − qL) , SL < 0 ≤ S∗

fR + SR(q
∗
R − qR) , S∗ < 0 ≤ SR

fR , 0 > SR

5. March forward in time.

qn+1
i = qn

i −
∆t

∆x
(fHLLC

i+1/2 − fHLLC
i−1/2 )

Also, perform a source term update for the volume fraction equation:

∂α1

∂t
+∇ · (α1u) = α1∇ · u

αn+1
1,i = ᾱn+1

i +
∆t

∆x
an1,i(Si+1/2 − Si−1/2)
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8.2 Hamilton-Jacobi Equations

ϕt +H(∇ϕ) = 0 ⇒ ϕt +H(ϕx, ϕy, ϕz) = 0

By taking spatial derivative of the entire equation, we can show that the solution ϕ to a Hamilton-
Jacobi equation is the integral of a solution, u, to a conservation law, ut +H(u)x = 0.

• Integral of discontinuity is a kink (i.e. discontinuity in the first derivative), so solutions to HJ
can develop kinks in the solution even if the data are initially smooth.

• Solutions to HJ equations cannot generally develop a discontinuity unless the corresponding
conservation law develops a delta function, which is physically unlikely. Thus, solution ϕ are
typically smooth.

Numerical discretisation

ϕn+1 − ϕn

∆t
+ Ĥn(ϕ−

x , ϕ
+
x , ϕ

−
y , ϕ

+
y , ϕ

−
z , ϕ

+
z ) = 0

CFL condition C = a∆t
∆x

≤ 1:

∆tmax
i

(
|Hx

i |
∆x

+
|Hy

i |
∆y

+
|Hz

i |
∆z

)
< 1

How should we approximate Ĥ? (assuming 2D)

1. Lax-Friedrichs Schemes:

Ĥ = H

(
ϕ−
x + ϕ+

x

2
,
ϕ−
y + ϕ+

y

2

)
− αx

(
ϕ+
x − ϕ−

x

2

)
− αy

(
ϕ+
y − ϕ−

y

2

)
where αx,y are dissipation coefficients that control the amount of numerical viscosity.

αx = max
i

|Hx(ϕx, ϕy)| , αy = max
i

|Hy(ϕx, ϕy)|

Further extensions such as Local Lax-Friedrichs (LLF) and Local Local Lax-Friedrichs (LLLF)
are designed to further reduce numerical dissipation.

2. Roe-Fix Schemes:

Ĥ = H(ϕ∗
x, ϕ

∗
y)− αx

(
ϕ+
x − ϕ−

x

2

)
− αy

(
ϕ+
y − ϕ−

y

2

)
3. Godunov’s Scheme:

Ĥ = extxextyH(ϕx, ϕy)
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8.3 Hamilton-Jacobi ENO/WENO Method

Level set equation:
ϕn+1
i − ϕn

i

∆t
+ vnx,i

(
∂ϕ

∂x

)n

i

+ vny,i

(
∂ϕ

∂y

)n

i

+ vnz,i

(
∂ϕ

∂z

)n

i

= 0

First-order upwind difference: (
∂ϕ

∂x

)n

i

=

{
ϕ+
x,i = D1

i+1/2 , if vx,i < 0

ϕ−
x,i = D1

i−1/2 , if vx,i > 0

Numerical methods for HJ equation is still just a matter of choosing approximations for ϕ±
x,y,z. We get to

higher-order spatial accuracy by providing better numerical approximations to ϕ−
x and ϕ+

x .

Divided difference notation:
D0

i = ϕi (at grid nodes)

D1
i+1/2ϕ =

D0
i+1ϕ−D0

i ϕ

∆x
=

ϕi+1 − ϕi

∆x
(midway grid nodes)

D2
i ϕ =

D1
i+1/2ϕ−D1

i−1/2ϕ

2∆x
=

D0
i+1ϕ−D0

i ϕ

∆x
− D0

i ϕ−D0
i−1ϕ

∆x

2∆x
=

ϕi+1 − 2ϕi + ϕi−1

2∆x2
(at grid nodes)

D3
i+1/2ϕ =

D2
i+1ϕ−D2

i ϕ

3∆x
=

ϕi+2−2ϕi+1+ϕi

2∆x2 − ϕi+1−2ϕi+ϕi−1

2∆x2

3∆x
=

ϕi+2 − 3ϕi+1 + 3ϕi − ϕi−1

3!∆x3
(midway)

Hamilton-Jacobi ENO method
Origin: Harten proposed the idea of essentially nonoscillatory (ENO) polynomial interpolation of
data for the numerical solution of C. laws. The basic idea was to compute the numerical flux func-
tions using the smoothest possible polynomial interpolants. After Osher and Sethain realise that the
HJ equations in 1D are integrals of conservation laws, they applied the ENO method to HJ equations.

Goal of HJ ENO: Choose the single approximation with the least error by selecting the smoothest
stencil for approximation of ϕ (differentiate to get ϕx) thus avoiding undue oscillations.

ϕx,i = Q′
1(xi) +Q′

2(xi) +Q′
3(xi)

To find ϕ−
x (vx,i > 0), we start with k = i− 1, and to find ϕ+

x (vx,i < 0) we start with k = i.

Q′
1(xi) = D1

k+1/2ϕ (First-order contribution)

Second-order accurate correction: choose D2
kϕ or D2

k+1ϕ? We want to avoid interpolating near
large variations such as discontinuities or steep gradients, since they cause overshoots in the interpo-
lating function, leading to numerical errors in the approximation of the derivative.

(c, k∗) =

{
(D2

kϕ, k − 1) , if |D2
kϕ| ≤ |D2

k+1ϕ|
(D2

k+1ϕ, k) , otherwise

Q2(x) = c(x− xk)(x− xk+1) ⇒ Q′
2(xi) = c[2(i− k)− 1]∆x
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Proof:

Q′
2(x) = c(x− xk) + c(x− xk+1)

= c(2x− xk − xk+1)

Q′
2(xi) = c(2xi − xk − xk+1)

= c(2i− 2k − 1)∆x

Third-order correction:

c∗ =

{
D3

k∗+1/2ϕ , if |D3
k∗+1/2ϕ| ≤ |D3

k∗+3/2ϕ|
D3

k∗+3/2ϕ , otherwise

Q3(x) = c∗(x− xk∗)(x− xk∗+1)(x− xk∗+2) ⇒ Q′
3(xi) = c∗

[
3(i− k∗)2 − 6(i− k∗) + 2

]
(∆x)2

Proof:

Q′
3(x) = c∗(x− xk∗)(x− xk∗+1) + c∗(x− xk∗)(x− xk∗+2) + c∗(x− xk∗+1)(x− xk∗+2)

Q′
3(xi) = c∗ [(xi − xk∗)(xi − xk∗+1) + (xi − xk∗)(xi − xk∗+2) + (xi − xk∗+1)(xi − xk∗+2)]

= c∗ [(i− k∗)(i− k∗ − 1) + (i− k∗)(i− k∗ − 2) + (i− k∗ − 1)(i− k∗ − 2)] (∆x)2

= c∗
[
3(i− k∗)2 − (i− k∗)− 2(i− k∗)− 3(i− k∗) + 2

]
(∆x)2

= c∗
[
3(i− k∗)2 − 6(i− k∗) + 2

]
(∆x)2

Hamilton-Jacobi WENO method

The numerical stencil for ϕ−
x,i is {ϕi−3, ϕi−2, ϕi−1, ϕi, ϕi+1, ϕi+2}. In fact, there are exactly 3 possible

HJ ENO approximations for them. Combining all these possible options gives us the WENO method.
For ϕ−

x,i:

v1 = D−ϕi−2 = D1
i−5/2 , v2 = D−ϕi−1 , v3 = D−ϕi = D1

i−1/2 , v4 = D−ϕi+1 , v5 = D−ϕi+2

The three potential HJ ENO approximations to ϕ−
x are:

ϕ1
x =

1

3
v1 −

7

6
v2 +

11

6
v3 , ϕ2

x = −1

6
v2 +

5

6
v3 +

1

3
v4 , ϕ3

x =
1

3
v3 +

5

6
v4 −

1

6
v5

Proof (k = i− 1 and k∗ = i− 2 and D3
k∗+1/2ϕ):

ϕ1
x,i = D1

i−1/2ϕ+D2
i−1ϕ[2(1)− 1]∆x+D3

i−3/2ϕ[3(2)
2 − 6(2) + 2](∆x)2

= D1
i−1/2ϕ+D2

i−1ϕ∆x+ 2D3
i−3/2ϕ(∆x)2

= v3 +
1

2
(v3 − v2) +

2

3
(D2

i−1ϕ−D2
i−2ϕ)∆x

= v3 +
1

2
(v3 − v2) +

1

3
(v3 − v2 − v2 + v1)

=
11

6
v3 −

7

6
v2 +

1

3
v1
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Motivation for HJ Weighted ENO: instead of choosing exactly one candidate stencils (overkill
in smooth regions), take a convex combination of the three ENO approximations.

If any of the three approximations interpolates across a discontinuity, it is given minimal weight in
the convex combination to minimise its contribution and the resulting errors. Otherwise, in smooth
regions, all three approximations are allowed to make significant contribution in a way that improves
the local accuracy from third-order up to fifth-order.

ϕx = ω1ϕ
1
x + ω2ϕ

2
x + ω3ϕ

3
x

where 0 ≤ ωk ≤ 1 and ω1 + ω2 + ω3 = 1.

In smooth regions, the optimal weights are:

ω1 = 0.1 , ω2 = 0.6 , ω3 = 0.3

we get the fifth-order approximation to ϕx,i and is known to provide the smallest truncation error.

To sustain both accuracy and essentially non-oscillatory property, the weights are defined according
to two principles:

1. If ϕ is smooth on the whole stencil, then we require:

ω1 = 0.1 + C1(∆x2) , ω2 = 0.6 + C2(∆x2) , ω3 = 0.3 + C3(∆x2)

in which case the WENO approximation is still fifth order accurate. Proof:

Associated error: ((((((((
(C1 + C2 + C3)(∆x2)(ϕ1,E

x ) +O(∆x2)O(∆x3) = O(∆x5)

2. If the stencil contains a singularity of ϕ (discontinuity), we are better off with digital (ωk = 0, 1)
weights that choose a single approximation for ϕx (revert to ENO) i.e. digital HJ ENO weights.

To compute the weights, we estimate the smoothness of the stencils as:

S1 =
13

12
(v1 − 2v2 + v3)

2 +
1

4
(v1 − 4v2 + 3v3)

2

S2 =
13

12
(v2 − 2v3 + v4)

2 +
1

4
(v2 − v4)

2

S3 =
13

12
(v3 − 2v4 + v5)

2 +
1

4
(3v3 − 4v4 + v5)

2

Define:

α1 =
0.1

(S1 + ϵ)2
, α2 =

0.6

(S2 + ϵ)2
, α3 =

0.3

(S3 + ϵ)2

with ϵ = 10−6 to avoid division by zero in the case of perfect smoothness. (a smooth solution has
small variation leading to small Sk) The actual weights are obtained by normalising αk:

ωi =
αi

α1 + α2 + α3
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• Nearly optimal weights are obtained as long as all the Sk are approximately the same size, as
is the case for sufficiently smooth data.

• If the data is not smooth, as indicated by large Sk, then the corresponding αk will be small
compared to the other αk’s, giving that particular stencil limited influence.

• If two of the Sk are relatively large, then their corresponding αk’s will both be small, and the
scheme will rely most heavily on a single stencil similar to the digital behaviour of HJ ENO.

• If all three Sk are large, the data are poorly conditioned, and none of the stencils are particularly
useful. Fortunately, this usually occurs only locally in space and time, allowing the methods to
repair themselves after the situation subsides.

TVD Runge-Kutta for time

EJ WENO and HJ ENO allow us to discretise the spatial terms to fifth-order accuracy, while the
forward Euler time discretisation is only first-order accurate in time. In this case, spurious oscillations
are often seen. This is when a higher-order temporal discretisation is necessary in order to obtain
accurate numerical solutions.

• First-order accurate RK (= forward Euler method):

ϕn+1
i − ϕn

i

∆t
+ vn ·∇ϕn = 0

• Second-order accurate RK (= Heun’s predictor-corrector method): advance solution to time
tn +∆t and tn + 2∆t

ϕn+1
i − ϕn

i

∆t
+ vn ·∇ϕn = 0 ,

ϕn+2
i − ϕn+1

i

∆t
+ vn+1 ·∇ϕn+1 = 0

followed by an averaging step:

ϕn+1 =
1

2
(ϕn + ϕn+2)

• Third-order accurate RK: advance the solution to time tn + ∆t and tn + 2∆t, followed by an
averaging step:

ϕn+1/2 =
3

4
ϕn +

1

4
ϕn+2

Then, advance solution to time tn + 3
2
∆t,

ϕ
n+3/2
i − ϕ

n+1/2
i

∆t
+ vn+1/2 ·∇ϕn+1/2 = 0

followed by a second averaging step:

ϕn+1 =
1

3
ϕn +

2

3
ϕn+3/2
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8.4 Primitive-variable Form of Baer–Nunziato Equations

Baer–Nunziato equations:
∂tU + ∂xF (U) +B(U)∂xα1 = S(U)

Ignore source terms,
∂α1

∂t
+ vI

∂α1

∂x
= 0

∂α1ρ1
∂t

+
∂α1ρ1v1

∂x
= 0

∂α1ρ1v1
∂t

+
∂α1(ρ1v

2
1 + p1)

∂x
= pI

∂α1

∂x

∂α1E1

∂t
+

∂α1(E1 + p1)v1
∂x

= pIvI
∂α1

∂x

∂α2ρ2
∂t

+
∂α2ρ2v2

∂x
= 0

∂α2ρ2v2
∂t

+
∂α2(ρ2v

2
2 + p2)

∂x
= pI

∂α2

∂x

∂α2E2

∂t
+

∂α2(E2 + p2)v2
∂x

= pIvI
∂α2

∂x

With ω = (α1, ρ1, v1, p1, ρ2, v2, p2),

For α1: trivial.

For ρ1:

α1
∂ρ1
∂t

+ ρ1
∂α1

∂t
+ α1

∂ρ1v1
∂x

+ ρ1v1
∂α1

∂x
= 0

α1
∂ρ1
∂t

− ρ1vI
∂α1

∂x
+ α1ρ1

∂v1
∂x

+ α1v1
∂ρ1
∂x

+ ρ1v1
∂α1

∂x
= 0

∂ρ1
∂t

+
ρ1
α1

(v1 − vI)
∂α1

∂x
+ v1

∂ρ1
∂x

+ ρ1
∂v1
∂x

= 0

For v1:

���
��

v1
∂α1ρ1
∂t

+ α1ρ1
∂v1
∂t

+
��

���
��

v1
∂(α1ρ1v1)

∂x
+ α1ρ1v1

∂v1
∂x

+
∂α1p1
∂x

− pI
∂α1

∂x
= 0

α1ρ1
∂v1
∂t

+ α1ρ1v1
∂v1
∂x

+ p1
∂α1

∂x
+ α1

∂p1
∂x

− pI
∂α1

∂x
= 0

α1ρ1
∂v1
∂t

+ α1ρ1v1
∂v1
∂x

+ (p1 − pI)
∂α1

∂x
+ α1

∂p1
∂x

= 0

∂v1
∂t

+
p1 − pI
α1ρ1

∂α1

∂x
+ v1

∂v1
∂x

+
1

ρ1

∂p1
∂x

= 0
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For p1:

E1 = ρ1ε1 +
1

2
ρ1v

2
1

∂α1ρ1ε1
∂t

+
1

2

∂α1ρ1v
2
1

∂t
+

∂α1ρ1ε1v1
∂x

+
1

2

∂α1ρ1v
3
1

∂x
+

∂α1p1v1
∂x

= pIvI
∂α1

∂x

∂α1ρ1ε1
∂t

+
∂α1ρ1ε1v1

∂x
+

1

2

∂α1ρ1v
2
1

∂t
+

1

2

∂α1ρ1v
3
1

∂x
+

∂α1p1v1
∂x

= pIvI
∂α1

∂x

Spot conservation of mass,

∂α1ρ1ε1
∂t

+
∂α1ρ1ε1v1

∂x
+

1

2
α1ρ1

∂v21
∂t

+
1

2
α1ρ1v1

∂v21
∂x

+
∂α1p1v1

∂x
= pIvI

∂α1

∂x

∂α1ρ1ε1
∂t

+
∂α1ρ1ε1v1

∂x
+ α1ρ1v1

∂v1
∂t

+ α1ρ1v
2
1

∂v1
∂x

+
∂α1p1v1

∂x
= pIvI

∂α1

∂x

Spot conservation of mass again,

α1ρ1
∂ε1
∂t

+ α1ρ1v1
∂ε1
∂x

+ α1ρ1v1
∂v1
∂t

+ α1ρ1v
2
1

∂v1
∂x

+
∂α1p1v1

∂x
= pIvI

∂α1

∂x

α1ρ1
∂ε1
∂t

+ α1ρ1v1
∂ε1
∂x

+ α1ρ1v1
∂v1
∂t

+ α1ρ1v
2
1

∂v1
∂x

+ α1v1
∂p1
∂x

+ p1
∂α1v1
∂x

= pIvI
∂α1

∂x

Divide throughout by α1

ρ1
∂ε1
∂t

+ ρ1v1
∂ε1
∂x

+ ρ1v1
∂v1
∂t

+ ρ1v
2
1

∂v1
∂x

+ v1
∂p1
∂x

+
p1
α1

∂α1v1
∂x

=
pIvI
α1

∂α1

∂x

ρ1
∂ε1
∂t

+ ρ1v1
∂ε1
∂x

+ ρ1v1
∂v1
∂t

+
���

��
ρ1v

2
1

∂v1
∂x

+
�

�
��

v1
∂p1
∂x

+ p1
∂v1
∂x

+
���

��p1v1
α1

∂α1

∂x
=

pIvI
α1

∂α1

∂x

Using v1:
∂v1
∂t

= −p1 − pI
α1ρ1

∂α1

∂x
− v1

∂v1
∂x

− 1

ρ1

∂p1
∂x

ρ1v1
∂v1
∂t

= −v1(��p1 − pI)

α1

∂α1

∂x
−

�
����

ρ1v
2
1

∂v1
∂x

−
�
�

��
v1
∂p1
∂x

After cancelling the terms, we have:

ρ1
∂ε1
∂t

+ ρ1v1
∂ε1
∂x

+
pIv1
α1

∂α1

∂x
+ p1

∂v1
∂x

=
pIvI
α1

∂α1

∂x

Consider ε1 = ε1(ρ1, p1),

∂ε1
∂t

=
∂ε1
∂ρ1

∂ρ1
∂t

+
∂ε1
∂p1

∂p1
∂t

,
∂ε1
∂x

=
∂ε1
∂ρ1

∂ρ1
∂x

+
∂ε1
∂p1

∂p1
∂x

ρ1
∂ε1
∂ρ1

(
∂ρ1
∂t

+ v1
∂ρ1
∂x

)
+

∂ε1
∂p1

(
ρ1

∂p1
∂t

+ ρ1v1
∂p1
∂x

)
+

pIv1
α1

∂α1

∂x
+ p1

∂v1
∂x

=
pIvI
α1

∂α1

∂x
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ρ1
∂ε1
∂ρ1

(
∂ρ1
∂t

+
�
�
��

v1
∂ρ1
∂x

)
+

∂ε1
∂p1

(
ρ1

∂p1
∂t

+ ρ1v1
∂p1
∂x

)
+

pIv1
α1

∂α1

∂x
+ p1

∂v1
∂x

=
pIvI
α1

∂α1

∂x

Using ρ1:

∂ρ1
∂t

= − ρ1
α1

(v1 − vI)
∂α1

∂x
−

�
�

��
v1
∂ρ1
∂x

− ρ1
∂v1
∂x

ρ1
∂ε1
∂ρ1

(
− ρ1
α1

(v1 − vI)
∂α1

∂x
− ρ1

∂v1
∂x

)
+

∂ε1
∂p1

(
ρ1

∂p1
∂t

+ ρ1v1
∂p1
∂x

)
+

pIv1
α1

∂α1

∂x
+ p1

∂v1
∂x

=
pIvI
α1

∂α1

∂x

ρ1
∂ε1
∂p1

∂p1
∂t

+

(
−ρ21(v1 − vI)

α1

∂ε1
∂ρ1

+
pIv1
α1

− pIvI
α1

)
∂α1

∂x
+

(
−ρ21

∂ε1
∂ρ1

+ p1

)
∂v1
∂x

+ ρ1v1
∂ε1
∂p1

∂p1
∂x

= 0

Note:

c2 =
p

ρ2 ∂ε
∂p

−
∂ε
∂ρ

∂ε
∂p

=
1
∂ε
∂p

(
p

ρ2
− ∂ε

∂ρ

)
Divide by ρ1,

∂ε1
∂p1

∂p1
∂t

+

(
−ρ1(v1 − vI)

α1

∂ε1
∂ρ1

+
pIv1
ρ1α1

− pIvI
ρ1α1

)
∂α1

∂x
+

(
−ρ1

∂ε1
∂ρ1

+
p1
ρ1

)
∂v1
∂x

+ v1
∂ε1
∂p1

∂p1
∂x

= 0

∂ε1
∂p1

∂p1
∂t

+
ρ1
α1

(
−(v1 − vI)

∂ε1
∂ρ1

+
pIv1
ρ21

− pIvI
ρ21

)
∂α1

∂x
+ ρ1

(
p1
ρ21

− ∂ε1
∂ρ1

)
∂v1
∂x

+ v1
∂ε1
∂p1

∂p1
∂x

= 0

Factoring,

∂ε1
∂p1

∂p1
∂t

+
ρ1
α1

(
−∂ε1
∂ρ1

+
pI
ρ21

)
(v1 − vI)

∂α1

∂x
+ ρ1

(
p1
ρ21

− ∂ε1
∂ρ1

)
∂v1
∂x

+ v1
∂ε1
∂p1

∂p1
∂x

= 0

∂ε1
∂p1

∂p1
∂t

+
ρ1
α1

(
pI
ρ21

− ∂ε1
∂ρ1

)
(v1 − vI)

∂α1

∂x
+ ρ1

(
p1
ρ21

− ∂ε1
∂ρ1

)
∂v1
∂x

+ v1
∂ε1
∂p1

∂p1
∂x

= 0

∂p1
∂t

+
ρ1c

2
1I

α1

(v1 − vI)
∂α1

∂x
+ ρ1c

2
1

∂v1
∂x

+ v1
∂p1
∂x

= 0

Hence, in primitive variable form:
∂w

∂t
+B(w)

∂w

∂x
= 0

with ω = (α1, ρ1, v1, p1, ρ2, v2, p2).

B(w) =



vI 0 0 0 0 0 0
ρ1
α1
(v1 − vI) v1 ρ1 0 0 0 0
p1−pI
α1ρ1

0 v1
1
ρ1

0 0 0
ρ1c21I
α1

(v1 − vI) 0 ρ1c
2
1 v1 0 0 0

ρ2
α2
(vI − v2) 0 0 0 v2 ρ2 0
p2−pI
α2ρ2

0 0 0 0 v2
1
ρ2

ρ1c22I
α2

(vI − v2) 0 0 0 0 ρ2c
2
2 v2
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8.5 Level Set Equations

Advection:
∂ϕ

∂t
+ v ·∇ϕ = 0

Normal motion (v = vnn̂):

∂ϕ

∂t
+ vn|∇ϕ|︸ ︷︷ ︸

H(∇ϕ)

= 0 ⇒ ϕt + vn
∇ϕ

|∇ϕ|
·∇ϕ = 0

Hx =
∂H

∂ϕx

= vnϕx|∇ϕ|−1

where ϕx = ∂ϕ
∂x
.

If ϕ is SDF,
∂ϕ

∂t
= −vn

ϕn+1 = ϕn − vn∆t (discretised) , ϕ(t) = ϕ0 − vnt (exact)

• Taking gradient:
∇ϕn+1 = ∇ϕn −�����∇(vn∆t)

If ϕn is initially a signed distance function (|∇ϕ| = 1), it stays an SDF for all time.

• If ϕ0 is an SDF, we can write down the exact solution for all time. On the other hand, when
ϕ0 is not an SDF, we need so solve it numerically by treating it as a Hamilton-Jacobi equation.

• Upwinding discretisation (approximating ϕx with ϕ+
x or ϕ−

x ): when ϕ+
x and ϕ−

x have the same
sign, assuming a > 0, choose ϕ−

x when aϕx > 0, choose ϕ+
x when aϕx < 0.However, when ϕ+

x

and ϕ−
x have different signs (sonic point), need to be careful to ensure that the correct solution

is obtained.

• Alternatives: Lax-Friedrichs method adds some numerical dissipation and uses central differ-
encing to treat the ambiguity near sonic points. Or even better, use Godunov scheme:

ϕ2
x = max(max(ϕ−

x , 0)
2,min(ϕ+

x , 0)
2) if a > 0

ϕ2
x = max(min(ϕ−

x , 0)
2,max(ϕ+

x , 0)
2) if a < 0
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Curvature-driven motion (v = −bκn̂):
Consider motion by mean curvature where the interface moves in the normal direction with a velocity
proportional to its curvature. When b > 0, the interface moves in the direction of the concavity, so
that circles (2D) shrink to a single point and disappear. When b < 0, the interface moves in the
direction of convexity, so that circles grow instead of shrink. This growing-circle effects lead to the
growth of small perturbations in the front including those due to round-off errors. b < 0 allows small
erroneous perturbations to incorrectly grow into O(1) features so it is ill-posed, and we neglect it.

∂ϕ

∂t
− bκ|∇ϕ| = 0 ⇒ ∂ϕ

∂t
− b

[
∇ ·

(
∇ϕ

|∇ϕ|

)]
|∇ϕ| = 0

It contains second derivatives of ϕ, so it is not a Hamilton-Jacobi equation. It is a parabolic term.

When ϕ is the signed distance function, we obtain the heat equation:

ϕt = b∇2ϕ

To use the heat equation form, it is particularly important to perform reinitialisation of ϕ.

Discretisation:

• Parabolic equation needs to be discretised using central differencing since the domain of de-
pendence includes information from all spatial directions, as opposed to hyperbolic equations,
where information flows in the direction of characteristics only.

• ∇2ϕ is discretised using D2
i ϕ.

• Stable time step:

∆t

(
2b

∆x2
+

2b

∆y2
+

2b

∆z2

)
< 0

We can see that ∆t ∼ O(∆x2) which is significantly more stringent than the hyperbolic case,
where ∆t ∼ O(∆x).

Modelling burning flame fronts

ϕt + v ·∇ϕ+ vn|∇ϕ|︸ ︷︷ ︸
hyperbolic HJ part

= bκ|∇ϕ|︸ ︷︷ ︸
parabolic

It has advection term, normal motion term and curvature-driven term. The advection terms accounts
for the velocity of the unburnt material. Most flames burn with a speed in the normal direction plus
extra heating and cooling effects due to the curvature of the front.

To discretise the Hamilton-Jacobi part, we identify partial derivatives of H with respect to ∇ϕ i.e.
Hx = ∂H

∂ϕx
and Hy = ∂H

∂ϕy
.

Hx = vx + vnϕx|∇ϕ|−1 and Hy = vy + vnϕy|∇ϕ|−1
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8.6 Ghost Fluid Methods Overview

Aim: capture the correct behaviour at the interface, by suitably populating the ghost cells with flow
properties such that the real fluid together with the corresponding ghost fluid depict the interface
properties and conditions precisely. Improvements are made to deal with strong shock waves or
different material properties across the interface.

1. Original GFM

• Populate the ghost cells based on the fact that the pressure and velocity are continuous
across the contact discontinuity. This enables us to define a fluid that has the pressure
and velocity of the real fluid at each point, but the entropy of some other fluid.

• Consider the case of air and water. In order to solve for the air, we replace the water with
ghost air that acts like the water in every way (pressure and velocity) but appears to be
air (entropy). In order to solve for the water, we replace the air with ghost water that acts
like the air in every way (pressure and velocity) but appears to be water (entropy). Since
the ghost fluids behave in a fashion consistent with the real fluids that they are replacing,
the appropriate boundary conditions are captured.

• Work well for shock tube problems and even a not-very-strong shock impacting on an
interface. However, it does not work very efficiently in the application to a strong shock
wave impacting on an interface.

• In such a situation, the pressure, velocity and entropy at the interface may experience
a sudden jump; the sudden jump of pressure, velocity and entropy across the interface
implies that the real fluid pressure and velocity may not readily be taken as “reasonably
acceptable” ghost fluid pressure and velocity and thus these have to be predicted separately
and correctly before the GFM is applied.

2. Modified GFM

• Sometimes the original GFM predicts a reflected rarefaction when there should be a re-
flected shock wave. So MGFM was specifically designed to address the problems suffered
when a strong shock wave impacts an interface.

• Looking at Riemann problem solution can give information about when this would happen.

• It uses characteristic equations to approximate RP solution.

• Non-physical shock refraction still cannot be avoided for a shock impacting on a gaseous
interface under critical condition.

3. Interface GFM

• Similar to modified GFM, still using the characteristic jumps, dp± ρcsdu = 0.

• It attempts to inform the real-ghost interaction by first obtaining interface conditions from
real-real fluid interaction, and then setting them to be the final states after the real-ghost
interaction. We then proceed to solve for the ghost states.
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4. Explicit simplified interface GFM

• Original GFM cannot handle entropy gradients across the interface.

• Physically, ESIM allows GFM to deal with temperature gradients.

• ESIM uses jump conditions of derivatives to allow linear extrapolation of entropy.

A correction to the real fluid nodes next to the interface is deemed necessary to accurately take
into account such influence.

5. Real GFM

• Similar to modified GFM, solves a Riemann problem at the interface to obtain the solution.

• In this case, the entire intermediate state of the mixed-material RP is computed, using
the fact the standard equation for a Riemann problem is actually a general equation for
multiple materials:

fL(pI ,uL) + fR(pI ,uR) + ∆v = 0

• This ensures that we have a thermodynamically reasonable state within the ghost cell.

• The real fluid states next to the interface instead of the ghost fluid states will be predicted
by solving a Riemann problem and the ghost fluid states are then obtained by solving an
advection equation. This will result in the complete modification and redefinition of the
real fluid next to the interface.

6. Riemann GFM

• Uses a Riemann solver to predict ghost-cell states adjacent to the interface.

• However, the Riemann problem solution is an evolved state of the problem (t > tn) so
using this as the ghost fluid state at time tn is incorrect.

7. Practical GFM

• Improves upon the Riemann GFM by finding a state for the ghost fluid region uG,L such
that the interaction between uG,L and uL results in u∗

L.

• Ghost fluid states are set as reflective boundary conditions, with vg = 2vI − vreal.

• The ghost cell and the real cell are equidistant from the interface.

• Correct for entropy errors in the ghost fluid states.
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8.7 Extrapolating Entropy

Starting from second law of thermodynamics,

dε = Tds− pdv ⇒ Tds = dε+ pdv

Constant entropy is by setting ds = 0,
dε+ pdv = 0

For ideal gas p = (γ − 1)ρε and we want s = s(p, v) i.e. a function of pressure and density,

dε =
vdp+ pdv

γ − 1

Then,
v

γ − 1
dp+

(
1

γ − 1
+ 1

)
pdv = 0

vdp+ γpdv = 0

1

p
dp+ γ

1

v
dv = 0

ln(pvγ) = ln

(
p

ργ

)
= constant

For stiffened gas, p = (γ − 1)ρε− γp∞ and we want s = s(p, v),

ε =
(p+ γp∞)v

γ − 1

dε =
(p+ γp∞)dv

γ − 1
+

vdp

γ − 1

Then, in a similar process to ideal gas,

(p+ γp∞)dv

γ − 1
+

vdp

γ − 1
+ pdv = 0

(p+ γp∞ + γp− p)dv + vdp = 0

γ(p∞ + p)dv + vdp = 0

γ
1

v
dv +

1

p+ p∞
dp = 0

ln vγ + ln(p+ p∞) = const

ln

(
p+ p∞
ργ

)
= const

For JWL EoS, we do the same things for finding an expression for ε = ε(p, v).
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8.8 Cavitation Model

Cavitation is pressure-induced phase change of a liquid into a gas, which occurs when pressure drops
below the saturated vapour pressure. It occurs on an acoustic timescale.

Requirements:

• Need phase change: use diffuse interface formulation.

• Need to know when water has reached the saturation pressure and will cavitate: need two
pressures in our model.

• Assume velocity equilibrium between water and vapour: use 6-equation model.

∂αgρg
∂t

+
∂αgρgvx

∂x
= 0

∂αlρl
∂t

+
∂αlρlvx

∂x
= 0

∂ρvx
∂t

+
∂(ρv2x + p)

∂x
= 0

∂αg

∂t
+ vx

∂αg

∂x
= µ(pg − pl)

∂αgρgεg
∂t

+
∂αgρgεgvx

∂x
+ αgpg

∂vx
∂x

= −pIµ(pg − pL)

∂αlρlεl
∂t

+
∂αlρlεlvx

∂x
+ αlpl

∂vx
∂x

= pIµ(pg − pL)

Extra energy equation: by also evolving the conserved quantity of total energy, we can ”correct”
for conservation errors in specific internal energy:

∂E

∂t
+

∂(E + p)vx
∂x

= 0

Note: this model assumes that cavitation does not result from mass transfer. Cavitation pockets
appear as the volume fraction increases for a small amount of gas present initially. Cavitation is thus
modelled as a mechanical relaxation process, occurring at infinite rate. (not as a mass transfer process)

Further assumption: make instantaneous relaxation assumption, µ → ∞, as we assume the
timescale over which cavitation occurs is fast. Relaxation is effectively converting pressure or ve-
locity from one material to another in a thermodynamically consistent manner.
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Pressure relaxation step:

∂αg

∂t
= µ(pg − pl) ,

∂αgρgεg
∂t

= −pIµ(pg − pl) ,
∂αlρlεl

∂t
= pIµ(pg − pl)

∂αgρg
∂t

= 0 ,
∂αlρl
∂t

= 0 ,
∂ρvx
∂t

= 0

Closure is achieved by the pressure equilibrium condition, we know the solution must give pl = pg.

1. Remove µ by combining equation for αg and αgρgεg:

εg
�
�
��∂αgρg

∂t
+ αgρg

∂εg
∂t

= −pI
∂αg

∂t

∂εg
∂t

= − pI
αgρg

∂

∂t

(
αgρg
ρg

)
= − pI

αgρg

[
αgρg

∂

∂t

(
1

ρg

)
+

1

ρg�
�

��∂αgρg
∂t

]
= −pI

∂νg
∂t

We aim to write the source term as a relationship between specific internal energy and density,
so we can use the EoS to equilibrate pressure.

2. Integrate:

εi − ε0i = −p̂I,i(νi − ν0
i ) where, p̂I,i =

1

νi − ν0
i

∫ ∆t

0

pI
∂νi
∂t

dt

We need an approximation to compute p̂I,i. We can assume p̂I,i = p, the relaxed pressure that
both liquid and gas reach through cavitation. This approximation is consistent with instanta-
neous relaxation, where the interfacial pressure immediately becomes the relaxed pressure.

3. Form a system of equations:
εi(p, νi)− ε0i (p

0
i , ν

0
i ) + p(νi − ν0

i ) = 0

εi(p, νi) =
pi+γip∞,i

γi−1
νi (EoS)

αg + αl = (αρ)gνg + (αρ)lνl = 1 (saturation constraint)

4. Solve system of equation for p:

1

γi − 1
νi(p+ γip∞,i)−

1

γi − 1
ν0
i (p

0
i + γip∞,i) + p(νi − ν0

i ) = 0

νi [�p+ γip∞,i + (γi − �1)p] = ν0
i

[
p0i + γip∞,i + (γi − 1)p

]
νi(p) =

p0i + γip∞,i + (γi − 1)p

γi(p+ p∞,i)
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Then,

(αρ)iνi =
ai + bip

ci + γip

where ai, bi, ci are just some constants.

ag + bgp

cg + γgp
+

al + blp

cl + γlp
− 1 = 0

which is a quadratic in p.

5. Solve the quadratic to find relaxed pressure p, and also we know the phase’s specific volume νi.

6. Correction/reinitialisation step: first compute mixture pressure using conservation of total
energy evolution equation.

pmix =
E − 1

2
ρv2 −

∑
i

αi

γi−1
· γip∞,i∑

i
αi

γi−1

Once the mixture pressure is determined, the internal energies of the phases are reinitialised
with the help of their respective EOS before going to the next time step.

εi = εi

(
pmix,

(αρ)i
αi

)
(EoS)

In summary, numerical method process:

1. At each cell boundary, solve the Riemann problem of the 6-equation system free of relaxation
terms, with a favourite solver such as HLLC.

2. Evolve all flow variables with the Godunov type method i.e. finite volume conservative update.

3. Relaxation step: solving the source term ODE. Determine the relaxed pressure by solving:∑
k

(αρ)kνk(p) = 1 with νk(p) = ν0
k

p0 + γkp∞,k + (γk − 1)p̂I
p+ γkp∞,k + (γk − 1)p̂I

after which we can find the phase’s specific volume and volume fraction. The Newton method
is appropriate for this task.

4. Compute the mixture pressure:

pmix =
ρε−

(
α1

γ1−1
· γ1p∞,1 +

α2

γ2−1
· γ2p∞,2

)
α1

γ1−1
+ α2

γ2−1

5. Reinitialisation step: reset the internal energies with the mixture pressure with the help of their
respective EoS.

6. Restart for the next time step.
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