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1 2018-19 (MOCK)

1.1 Q1

1. (Part I)

(a) Mie-Grueisen EoS:
p = Γ(ρ) · ρ · (ϵ− ϵref (ρ)) + pref (ρ)

where pref (ρ) and ϵref (ρ) is the reference pressure and reference energy, respectively. Γ(ρ)
is the Gruneisen parameter. ϵ is the specific internal energy. e = ρϵ⇒ ϵ = eν

(b)

(ρc)2 = ρ2ν2
(
−∂p
∂v

∣∣∣
e
+ p

∂p

∂e

∣∣∣
v

)
and p = pref (ν) +

1

ν
Γ(ν)(ϵ− ϵref (ν))

∂p

∂v

∣∣∣
e
=

dpref
dν

− Γ(ν)

ν

dϵref (ν)

dν
+ (ϵ− ϵref (ν))

d

dν

(
Γ(ν)

ν

)
Γ(ν) = ν

∂p

∂e

∣∣∣
ν

So,

(ρc)2 =

︷ ︸︸ ︷
−dpref (ρ)

dν
+

Γ(ν)

ν

dϵref (ν)

dν
− (ϵ− ϵref (ν))

∂

∂ν

(
Γ(ν)

ν

)
+

︷ ︸︸ ︷
p
Γ(ν)

ν

= −dpref (ρ)

dν
+

Γ(ν)

ν

[
pref (ρ) +

dϵref (ν)

dν

]
+

[
Γ(ν)2

ν2
− d

dν

(
Γ(ν)

ν

)]
(ϵ− ϵref (ν))

(c) i. Isentrope reference curve. Entropy is constant along the curve.

ii.

de = −pdv + Tds⇒ ds =
p

T
dv +

1

T
de

∂s

∂v

∣∣∣
e
=
p

T
and

∂s

∂e

∣∣∣
v
=

1

T

∂2s

∂e ∂v
=

∂

∂e

( p
T

) ∣∣∣
v

and
∂2s

∂v ∂e
=

∂

∂v

(
1

T

) ∣∣∣
e

They are equal, hence proving the relationship.

iii. Complete the EoS by providing a reference temperature.

iv. Along isentrope, ds = 0,

Γ(ν) = − ν

T

∂T

∂ν

∣∣∣
s
= −∂ lnT

∂ ln ν

∣∣∣
s

1

T

∂T

∂ν
= −Γ

ν
⇒ ln

(
T

T0

)
= −Γ ln

(
ν

ν0

)
Tref(ν) = T0

(
v

v0

)−Γ

Thus, T (ν) = e−eref(ν)
Γcv

ν + Tref(ν).
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(Part II)

(a)
F (v, T ) = e− Ts

dF = Tds− pdv − Tds− sdT = −sdT − pdv

∂F

∂T

∣∣∣
v
= −s and

∂F

∂v

∣∣∣
T
= −p

∂2F

∂v ∂T
= −∂s

∂v

∣∣∣
T

and
∂2F

∂T ∂v
= − ∂p

∂T

∣∣∣
v

The two expressions are equal, proving the relationship.

(b) (
p+

a

v2

)
(v − b) = RT

Differentiate EoS w.r.t. T while keeping v constant:

(v − b)
∂p

∂T
= R

Consider total derivative of s in terms of dT and dv, motivated by part (a):

ds =
∂s

∂T
dT +

∂s

∂v
dv

=
cv
T
dT +

∂p

∂T
dv

=
cv
T
dT +

R

v − b
dv

We simply integrate to obtain an expression for s:∫ s

s0

ds = cv

∫ T

T0

dT

T
+R

∫ v

v0

1

v − b
dv

s− s0 = cv ln

(
T

T0

)
+R ln

(
v − b

v0 − b

)
Substituting Van der Waals’s EoS and given R = cv(γ

′ − 1), we have:

s = s0 + cv ln

(
(p+ a

v2
)(v − b)

(p0 +
a
v20
)(v0 − b)

)
+ cv(γ

′ − 1) ln

(
v − b

v0 − b

)

s = s0 + cv ln

(
(p+ a

v2
)(v − b)γ

′

(p0 +
a
v20
)(v0 − b)γ′

)
(c) Set a = b = 0.

4



MPhil Scientific Computing 1 2018-19 (MOCK) Simulation of Matter under Extreme Conditions

1.2 Q2

2. (a) λ ∈ [0, 1]. λ is the reaction progress variable, it tells us how much reactant has turned into
products. At the beginning, we only have reactants, so λ = 0. At the end, assuming all
reactants are converted to products, λ = 1.

(b) Chemical energy can either appear as in source term or incorporated into EoS.

∂

∂t

(
ρ

(
1

2
u2 + ẽ+ λQ

))
+

∂

∂x

(
ρ

(
1

2
u2 + ẽ+ λQ

)
u+ pu

)
= ρRQ

∂

∂t

(
ρ

(
1

2
u2 + ẽ

))
+

∂

∂x

(
ρ

(
1

2
u2 + ẽ

)
u+ pu

)
+
∂

∂t
(ρλQ) +

∂

∂x
(ρλQu) = ρRQ︸ ︷︷ ︸

Evolution of λ

So,
∂

∂t

(
ρ

(
1

2
u2 + ẽ

))
+

∂

∂x

(
ρ

(
1

2
u2 + ẽ

)
u+ pu

)
= 0

(c) i. The Rayleigh line is a straight line that connects the points corresponding to the ini-
tial and final states on a graph of pressure versus specific volume for a substance
subjected to a shock wave.

Side note: the RH condition is derived assuming w1 = (ρ1, u1 = 0, p1 = 0) . Zero pres-

sure (stress) make sense for solids, as under atmospheric conditions, a solid material
is close to zero-stress condition.

Essentially, we want to eliminate u2 from momentum RH equation:

S − ρ1S

ρ2
= u2 (mass equation)

Then,

p2 − p1 = (ρ2S − ρ1S)

(
S − S +

ρ1S

ρ2

)
= S2(ρ2 − ρ1)

ρ1
ρ2

(Rayleigh line)

ii. No, it is not affected. The additional chemical energy source term only comes in
through the energy equation.
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iii. Derivation of Hugoniot Equation/Curve [ε = ε(p, ν)]

From mass continuity RH equation:

S(ρ2 − ρ1) = ρ2u2

S =
ρ2u2
ρ2 − ρ1

Substitute into momentum RH equation:

p2 − p1
ρ2u2

=
ρ2u2
ρ2 − ρ1

− u2

p2 − p2
ρ2u2

=
ρ1u2
ρ2 − ρ1

u22 =
(p2 − p1)(ρ2 − ρ1)

ρ1ρ2

Then, we wish to eliminate u2 and S from the energy RH condition:

p2u2 = ρ1
ρ2u2
ρ2 − ρ1

(
(p2 − p1)(ρ2 − ρ1)

2ρ1ρ2
+ e2 − e1

)

p2 =
ρ1ρ2
ρ2 − ρ1

(
(p2 − p1)(ρ2 − ρ1)

2ρ1ρ2
+ e2 − e1

)
p2 =

1

2
(p2 − p1) +

ρ1ρ2
ρ2 − ρ1

(e2 − e1)

1

2
(p2 + p1) =

ρ1ρ2
ρ2 − ρ1

(e2 − e1)

e2 − e1 =
1

2
(p2 + p1)

(
1

ρ1
− 1

ρ2

)
e2 − e1 =

1

2
(p2 + p1)(ν1 − ν2)

iv. The Hugoniot equation gives all possible thermodynamic states behind the shock
wave/discontinuity which satisfy the RH conditions.

v. The heat of detonation Q is involved in the reactive system. Take e2 = ẽ2 − λQ. The
Hugoniot equation becomes:

ẽ2 − e1 =
1

2
(p2 + p1)(ν1 − ν2) + λQ

6
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ZND detonation model: a 1D model for the process of detonation of an explo-
sive (proposed during WW1).

First, an infinitesimally thin shock wave compresses the explosive to a high pres-
sure called the von Neumann spike, while remaining unreacted. It marks the onset
of the zone of exothermic chemical reaction.

CJ point is a point at which the Rayleigh line is tangent to the Hugoniot curve.

vi.

vii. The CJ point is the end of the reaction zone (sonic locus, where u = c. The Von
Neumann point is the highest attainable pressure and the beginning of the reaction
zone in a ZND detonation.

1.3 Q3

3. (a) Take 1D flow to be along x-direction.

∂ρ

∂t
+
∂ρvx
∂x

= 0

∂ρvx
∂t

+
∂

∂x

(
ρv2x + p+

1

2
(B2

x +B2
y +B2

z )−B2
x

)
= 0

∂ρvy
∂t

+
∂

∂x
(ρvyvx −ByBx) = 0

∂ρvz
∂t

+
∂

∂x
(ρvzvx −BzBx) = 0

∂U

∂t
+

∂

∂x

(
(U + p+

1

2
(B2

x +B2
y +B2

z ))vx − (vxBx + vyBy + vzBz)Bx

)
= 0

∂Bx

∂t
= 0

∂By

∂t
+

∂

∂x
(Byvx − vyBx)

∂Bz

∂t
+

∂

∂x
(Bzvx − vzBx)

7
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(b) Doing it equation-by-equation:

• For ρ:
∂ρ

∂t
+ ρ

∂vx
∂x

+ vx
∂ρ

∂x
= 0

• For vx:

ρ
∂vx
∂t

+ vx
∂ρ

∂t
+ 2ρvx

∂vx
∂x

+ v2x
∂ρ

∂x︸ ︷︷ ︸
factor out vx

+
∂p

∂x
+

�
�

�
�

Bx
∂Bx

∂x
+By

∂By

∂x
+Bz

∂Bz

∂x
−

���
��

2Bx
∂Bx

∂x
= 0

since ∇ ·B = ∂B
∂x

= 0.

∂vx
∂t

+ vx
∂vx
∂x

+
1

ρ

∂p

∂x
+
By

ρ

∂By

∂x
+
Bz

ρ

∂Bz

∂x
= 0

• For vy:

ρ
∂vy
∂t

+ ρvx
∂vy
∂x

−
�
�

�
�

By
∂Bx

∂x
−Bx

∂By

∂x
= 0

∂vy
∂t

+ vx
∂vy
∂x

− Bx

ρ

∂By

∂x
= 0

• For vz:
∂vz
∂t

+ vx
∂vz
∂x

− Bx

ρ

∂Bz

∂x
= 0

• For p. Given:
∂ρe

∂t
+
∂ρevx
∂x

+ p
∂vx
∂x

= 0

Using p = (γ − 1)ρe

1

γ − 1

∂p

∂t
+

1

γ − 1

(
vx
∂p

∂x
+ p

∂vx
∂x

)
+ p

∂vx
∂x

= 0

∂p

∂t
+ vx

∂p

∂x
+

�
�
�

p
∂vx
∂x

+ γp
∂vx
∂x

−
�

�
�

p
∂vx
∂x

= 0

∂p

∂t
+ vx

∂p

∂x
+ ρc2s

∂vx
∂x

= 0

• For By:
∂By

∂t
+By

∂vx
∂x

+ vx
∂By

∂x
−

�
�

��vy
∂Bx

∂x
−Bx

∂vy
∂x

= 0

∂By

∂t
+By

∂vx
∂x

−Bx
∂vy
∂x

+ vx
∂By

∂x
= 0

• For Bz:
∂Bz

∂t
+Bz

∂vx
∂x

−Bx
∂vz
∂x

+ vx
∂Bz

∂x
= 0

8



MPhil Scientific Computing 1 2018-19 (MOCK) Simulation of Matter under Extreme Conditions

Hence, in matrix form:

∂

∂t



ρ
vx
vy
vz
p
By

Bz


+



vx ρ 0 0 0 0 0
0 vx 0 0 1/ρ By/ρ Bz/ρ
0 0 vx 0 0 −Bx/ρ 0
0 0 0 vx 0 0 −Bx/ρ
0 ρc2s 0 0 vx 0 0
0 By −Bx 0 0 vx 0
0 Bz 0 −Bx 0 0 vx


∂

∂x



ρ
vx
vy
vz
p
By

Bz


= 0

(c) Ordered:
vx − cf ≤ vx − ca ≤ vx − cs ≤ vx ≤ vx + cs ≤ vx + ca ≤ vx + cf

Need to prove 0 ≤ cs ≤ ca ≤ cf .

• For 0 ≤ cs. We observe that:√
(a2 + c2a)

2 − 4
a2B2

x

ρ
≤ a2 + c2a

So, 0 ≤ cs.

• For cs ≤ ca. Consider:

a2 + c2a −

√
(a2 + c2a)

2 − 4
a2B2

x

ρ
≤ 2c2a

a2 −

√
(a2 + c2a)

2 − 4
a2B2

x

ρ
≤ c2a

(a2 − c2a)
2 ≤ (a2 + c2a)

2 − 4
a2B2

x

ρ

4
a2B2

x

ρ
≤ 4a2c2a

B2
x

ρ
≤ c2a =

B2
x +B2

y +B2
z

ρ

The inequality holds.

• ca ≤ cf . Consider:

2c2a ≤ a2 + c2a +

√
(a2 + c2a)

2 − 4
a2B2

x

ρ

(c2a − a2)2 ≤ (a2 + c2a)
2 − 4

a2B2
x

ρ

4
a2B2

x

ρ
≤ 4a2c2a

B2
x

ρ
≤ c2a

The inequality holds.

9
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2 2019-20 (MOCK)

2.1 Q1

1. (Part I)

(a)
∂ρ

∂t
+∇ · (ρu) = 0

∂ρu

∂t
+∇ · (ρu⊗ u− σ) = 0

∂ρ(1/2u2 + e)

∂t
+∇ ·

(
ρ

(
1

2
u2 + e

)
u+ pu

)
= ∇ · (σ′ · u− q)

(b) An incomplete EoS, p = p(ρ, ε), provides closure between density, pressure and specific
internal energy. However, heat flux is a function of temperature. An incomplete EoS
cannot close the system, as T is not specified.

(c) We recover the Euler equations, which is hyperbolic.

(Part II)

(a) pref(ρ): reference pressure curve.
eref(ρ): reference energy curve.
Γ(ρ): Gruneisen coefficient/gamma.

(b) • Isentrope, curve of constant entropy.

• Hugoniot curve/shock locus, curve of thermodynamic states behind a shock wave
which satisfy the Rankine-Hugoniot conditions.

• No, it is missing a reference temperature, Tref.

(c) Stiffened gas:
p = (γ − 1)ρε− γp∞

So, Γ = γ − 1, pref = −γp∞ and εref = 0.

Ideal gas:
p = (γ − 1)ρε

So, Γ = γ − 1, pref = 0 and εref = 0.

(d) Isentrope: ds = 0. Ideal gas: p = (γ − 1)ρε and pv = nRT .

i.
de =���Tds− pdv = −pdv

de = −(γ − 1)ρed

(
1

ρ

)
1

e
de = (γ − 1)

1

ρ
dρ

ln

(
e

e0

)
= (γ − 1) ln

(
ρ

ρ0

)
10
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⇒ e = e0

(
ρ

ρ0

)(γ−1)

e = e0

(
ρ0
ρ

)−(γ−1)

and, substituting e = pv
γ−1

,

pv

γ − 1
=

p0v0
γ − 1

(
ρ0
ρ

)−(γ−1)

p = p0
ρ

ρ0

(
ρ

ρ0

)γ−1

p = p0

(
ρ

ρ0

)γ

ii.

c2 =
∂p

∂ρ

∣∣∣
s

c2 =
γp0
ρ0

(
ρ

ρ0

)(γ−1)

=
γp0
ρ

(
ρ

ρ0

)γ

=
γp

ρ

⇒ c2 = c20

(
ρ

ρ0

)(γ−1)

iii.
dp = c2dρ∫

dp

ρc
=

∫
c

ρ
dρ

=

∫
c0
ρ1/2(γ−3)

ρ
1/2(γ−1)
0

dρ

=
c0

ρ
1/2(γ−1)
0

ρ1/2(γ−1)

1/2(γ − 1)

=
2c

γ − 1

11
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2.2 Q2

2. (a) CJ theory: consider detonation as a shock wave and assume chemical reaction to be com-
pleted instantaneously.

ZNH theory: considers the structure of the detonation wave and assume reaction is not
instantaneous.

(b)

p2u2 = ρ1S

(
1

2
u22 + e2 − λQ− e1

)
(c)

p2v2
γ − 1

− λQ− p1v1
γ − 1

=
1

2
(p2 + p1)(v1 − v2)

(d) For reactive, we have the augmented Euler equation.

∂

∂t


ρ
ρu

ρ
(
1
2
u2 + e

)
ρλ

+
∂

∂x


ρu

ρu2 + p
ρ
(
1
2
u2 + e

)
u+ pu

ρλu

 =


0
0
0
ρK

 or


0
0

ρKQ
ρK


with,

ρe =
p

γ − 1
− ρλQ or ρe =

p

γ − 1

where K is the reactive rate law and Q is the heat of detonation. The chemical energy can
either be incorporated into the total energy or appear as a source term.

(e) Add a fourth row.

U ∗
K = ρK

(
SK − uK
SK − S∗

)
1
S∗

eK
ρK

+ (S∗ − uK)
[
S∗ + pK

ρK(SK−uK)

]
1
ρK

(
SK−S∗

SK−uK

)
λK


Proof : Jump conditions: f ∗ − fK = S(U∗ − UK).

ρ∗Lλ
∗
LS

∗ − ρLλLuL = SL(ρ
∗
Lλ

∗
L − ρLλL)

ρ∗Lλ
∗
L(S

∗ − SL) = ρLλL(uL − SL)

λ∗L =
SL − uL
SL − S∗

ρL
ρ∗L
λL

λ∗L = λL

Physical reasoning: λ can only jump across contact discontinuity where the material
change.

(f) 4 waves. Eigenvalues:
λ1,2 = u, λ3,4 = u± cs

where cs is the sound speed. u is a repeated eigenvalue.
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(g) To solve hyperbolic PDE with source terms, we use operator splitting, where we separate
the conservation law update and the source term update. Consider two operations to give
a first-order update:

un+1 = S(∆t)C(∆t)(un)

where ∆t is the stable time step.

• C(∆t): ignore the source term and solve the conservation law PDE over time ∆t, to get
an intermediate state ūn+1. We could use HLLC solver here.

PDE: ∂u
∂t

+∇ · f(u) = 0

IC: un

}
= ūn+1

• S(∆t): ignore the divergence operator and solve the balance law ODE over ∆t, to get
final state un+1. We could use RK4 or Heun method here.

ODE: du
dt

= s(u)

IC: ūn+1

}
= un+1

Side note: for second order,

un+1 = S
1
2
∆tC∆tS

1
2
∆t(un)

Source terms are modelling physical behaviour not included in the conservation law, so

they will have their own timescale. E.g. diffusion timescale is ∆ts =
(∆x)2

2D
. If the source

term is stiff (∆ts < ∆tCFL). E.g. chemical reactions. In general, the stable time step is
∆t = min(∆tCFL,∆ts). We do not want to integrate both equations with the smaller source
term time step, as it leads to greater computational cost and unnecessary accumulation or
error. we could use:

• Subcycling: If source term involve solving a rapid physical process, ODE solver
need to be operated at a smaller optimal time step (∆ts) than the hyperbolic solver.
Hence, we run the ODE solver several times for each single time step (∆tCFL) in the
hyperbolic solver.

• Stable implicit scheme: although implicit schemes are more computationally ex-
pensive than explicit schemes, if ∆ts ≪ ∆tCFL, solving the source term implicitly
and evolving the hyperbolic system with ∆tCFL may be more efficient. It is useful for
parabolic source terms which have infinite propagation speed and lack of discontinu-
ities.

See 2021-22 (Exam) Q2. Link

(h) We would use the same augmented euler equations as in (d) but now ρ would describe the
density of the mixture. λ would be the mass fraction of the reactants and the mixture
rules we would need are: e = λe1 + (1− λ)e2 and v = λv1 + (1− λ)v2. We need pressure
and temperature equilibrium to close the system.

13
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2.3 Q3

3. (a) We compute electric field using equation (5), then we can use equation (7) to compute the
charge density directly.

(b)
∂

∂t
∼ v

a

(c) From equation (4),
v|B|
a

∼ −|E|
a

⇒ |E| ∼ v|B|

Consider equation (5), time derivative has dimensions:

1

c2
∂E

∂t
∼ v2|B|

c2a
≪ 1

We can neglect time derivative in equation (5) and it reduces to:

J = µ−1
0 ∇×B

From equation (7), τ ∼ ϵ0|E|
a

, Consider equation (2),

τE ∼ ϵ0v
2|B|2

a
=
v2|B|2

c2µ0

≪ 1

We can neglect the τE component in equation (2).

Since charge density no longer appears in any of the evolution equation, we no longer need
equation (7). OR We can use ηJ = E + v×B to remove E from all evolution equations,
and we do not need any τ in any equation. So, we no longer need equation (7).

(d) Zero resistivity / perfect conductivity (η = 0).

14



MPhil Scientific Computing 2 2019-20 (MOCK) Simulation of Matter under Extreme Conditions

(e) Astrophysical plasma v.s. lightning

System of Equations

• Astrophysical application uses the non-relativistic ideal MHD. The ideal approxima-
tion is valid as the length scales are large, and the material is fully ionised. We have
4 evolution equation for density, momentum, energy and magnetic field.

• Lightning produces current-induced plasma, which act on timescales comparable to
the speed of light (∼ 0.3c). This means the magnetic field is evolving much faster than
the hydrodynamics of the system. From the fluid variable perspective, as they evolve,
it appears the magnetic field nearly instantaneously ”relax” to match their evolution.
We adopt an electrostatic approach and ignore the magnetic field evolution equation.
We have 3 evolution equation, and additional equations to compute magnetic field
from current distribution. (∇ · J = 0 and µ0J = −∇2A)

What can be considered negligible or non-negligible

• For astrophysical, ideal MHD

• For lightning, resistivity is non-negligible. Air might be partially-ionised.

Equation of State

• Astrophysical plasma is fully ionised, can consider ideal gas EoS p = (γ − 1)ρε with
γ = 5/3.

• Lightning is partially ionised, and the level of ionisation substantially changes the
physical properties of the plasma. Air contains different components which needs to
be captured by the EoS, or we could use a tabulated EoS.

Additional Source Terms

• Astrophysical plasma may require gravitational terms.

• Lightning reaches high enough temperatures that energy loss due to radiative emission
cannot be neglected.
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3 2019-20 (EXAM)

3.1 Q1

1. (Part I)

(a)
Aim: ds = Cvd ln(pv

γ)

Ideal gas: de = Tds− pdv , e = CvT =
pv

γ − 1
, pv = RT

I want to get rid of de.

de =
pdv

γ − 1
+

vdp

γ − 1

So,

ds =
1

T
de+

p

T
dv

=
1

T (γ − 1)
(pdv + vdp) +

p

T
dv

=

(
p

T (γ − 1)
+
p

T

)
dv +

v

T (γ − 1)
dp

=
γp

T (γ − 1)
dv +

v

T (γ − 1)
dp

With,

T (γ − 1) =
pv

Cv

ds =
Cvγp

pv
dv +

Cvv

pv
dp

=
Cvγ

v
dv +

Cv

p
dp

= Cv

(
γ
dv

v
+
dp

p

)
= Cv (γd(ln v) + d ln(p))

= Cvd ln(pv
γ)

Integrating to get expression for s,∫
ds =

∫
Cvd ln(pv

γ)

s = s0 + Cv
pvγ

p0v
γ
0

16
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(b)

Sound speed: c2 =
∂p

∂ρ

∣∣∣
s

0 =
γdv

v
+
dp

p

dp

p
= −γ dv

v
= −γ d(1/ρ)

v
=
γρdρ

ρ2

c2 =
∂p

∂ρ

∣∣∣
s
=
γp

ρ
⇒ p

ρ
=
c2

γ

h =
c2

γ
+ e

=
c2

γ
+

p

ρ(γ − 1)

= c2
(
1

γ
+

1

γ(γ − 1)

)
=

c2

γ − 1

(c) A reference temperature curve, Tref have to be provided. For example,

T =
e

Cv

→ T =
e

Cv

+ Tref

(d) At low temperatures, intermolecular forces becomes significant and kinetic energy of the
particles decreases. As a result, potential energy is not much lower than kinetic energy
and the ideal gas approximation no longer holds.

Assumptions of ideal gas EoS:

i. Gas is made up of non-interacting point particles.

ii. Intermolecular forces result in a potential energy that is much lower than the
kinetic energy of the particles.

iii. Constant specific heats.

Advantages:

• Derived from laws of thermodynamics.

• Applies to a wide range of gases and plasmas, over a wide range of conditions.
E.g. air and noble gases at atm, plasma for astrophysical or fusion models and
interior of neutron stars.

(e) For steady flows, time derivative vanishes, ρu
ρu2 + p

(ρE + p)u


x

= 0

17
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(f)

Note: E = e+
1

2
u2

∂

∂x
(ρu) = 0 ,

∂

∂x
(ρu2 + p) = 0 ,

∂

∂x

((
ρe+

1

2
ρu2 + p

)
u

)
= 0

From equation (3),

ρu
∂

∂x

(
e+

1

2
u2 + pν

)
+

�������������(
e+

1

2
u2 + pν

)
∂

∂x
(ρu) = 0

∂

∂x

(
e+

1

2
u2 + pν

)
= 0

So,

e+
1

2
u2 + pν = constant

(g) For isentropic flow, ds = 0,
de = −pdν

d(e+ pν) = de+ pdν + νdp

= νdp

=
dp

ρ

So,

e+ pν =

∫
dp

ρ

e+ pν +
1

2
u2 =

1

2
u2 +

∫
dp

ρ

(Part II)

(a) A material undergoes deformation when subjected to stress. Strain provides a measure
of the deformation. Deformation is the transformation of a body from a reference con-
figuration to the current configuration. This transformation can be described using the
deformation gradient:

Fij =
dxi
dXj

where Fij transforms an infinitesimal particle from its reference configuration dX to its
current Eulerian position dx.

Why deformation gradient?

• Not affected by translation or rotation.

• Length scales are accounted for.
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Closure

• Stress is related to strain, strain to deformation gradient, deformation gradient to
density. A relationship between strain and conserved variables is essential for closing
the solid system of equations.

(b) Longitudinal deformation of a rod is:

e =
δl

l0
where e is the strain and δl is the absolute elongation, δl = l− l0. The absolute elongation
cannot be used by itself, as length scales need to be accounted for. For example, for the
same absolute elongation of 1cm, rods of length 10cm and 5cm should be in different states.

(c)

Fij =
∂xi
∂ξj

, ui =
dxi
dt

dFij

dt
=

d

dt

(
∂xi
∂ξj

)
=
∂ui
∂ξj

=
∂ui
∂xk

∂xk
∂ξj

=
∂ui
∂xk

Fkj

= (∇kui)Fkj

where,
Lik = ∇kui

(d) In addition:
∂ρ

∂t
+∇k(ρuk) = 0 ,

d

dt
=

∂

∂t
+ uk∇k

We also have,
dFij

dt
−∇kuiFkj = 0

∂Fij

∂t
+ uk∇kFij −∇kuiFkj = 0

Consider,

ρ

(
∂Fij

∂t
+ uk∇kFij − (∇kui)Fkj

)
+ Fij

(
∂ρ

∂t
+∇k(ρuk)

)
= 0

∂ρFij

∂t
+∇k(ρukFij)−������

Fij∇k(ρuk)−∇k(uiρFkj) + ui∇k(ρFkj) +������
Fij∇k(ρuk) = 0

∂ρFij

∂t
+∇k(ρukFij)−∇k(uiρFkj) = −ui∇k(ρFkj)

∂ρFij

∂t
+∇k(ukρFij − uiρFkj) = −ui∇k(ρFkj)

We can impose an additional constraint, if

∇k(ρFkj) = 0

for the initial data, then this relationship holds true all the time. This means that for appro-
priately chosen initial data, we have a conservation law for F .
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3.2 Q2

2. (a)

B → B
√
µ0

, E → E
√
µ0

, J → √
µ0J

(b) For non-relativistic, v ≪ c. Assume non-negligible B and v.

Equation (7) gives |E| ∼ v|B|. We also have, ∇ ∼ 1
a
and ∂

∂t
∼ v

a
where a and t are the

characteristic length and timescale.

The Poisson’s equation for E is ∇ · E = τ
ϵ0
. We have |E|

a
= τµ0c

2, τ = v|B|
aµ0c2

. Then, the

term τE ∼ v2|B|2
c2aµ0

≪ 1. We can discard the τE term in the momentum equation under
non-relativistic assumption.

After scaling:
J ×B → √

µ0J ×B/
√
µ0 → J ×B

∂B

∂t
+∇×E = 0 → 1

√
µ0

∂B

∂t
+

1

µ0

∇×E = 0 → ∂B

∂t
+∇×E = 0

J = µ−1
0 ∇×B → √

µ0J =
1

√
µ0

∇×B → J = ∇×B

(c)

U = ρe+
1

2
ρu2 +

1

2
B2

∂U

∂t
=
∂(ρe)

∂t
+
∂

∂t

(
1

2
ρuiui

)
+
∂

∂t

(
1

2
BiBi

)
=
∂(ρe)

∂t
+

1

2
uiui

∂ρ

∂t
+

1

2
ρui

∂ui
∂t

+
1

2
ρui

∂ui
∂t

+
1

2
Bi
∂Bi

∂t
+

1

2
Bi
∂Bi

∂t

=
∂(ρe)

∂t
+

1

2
uiui

∂ρ

∂t
+ ρui

∂ui
∂t

+Bi
∂Bi

∂t

=
∂(ρe)

∂t
+

1

2
uiui

∂ρ

∂t
+ ui

∂ρui
∂t

− uiui
∂ρ

∂t
+Bi

∂Bi

∂t

=
∂(ρe)

∂t
− 1

2
uiui

∂ρ

∂t
+ ui

∂ρui
∂t

+Bi
∂Bi

∂t

=
∂(ρe)

∂t
− 1

2
u2
∂ρ

∂t
+ u · ∂ρu

∂t
+B · ∂B

∂t

We have the evolution equation for momentum and magnetic field. This allows us to ob-
tain the evolution equation for energy by performing the dot product of velocity with the
momentum evolution equation and dot product of magnetic field with the magnetic field
evolution equation.

It identifies how to bring the non-conservative equations into conservative form for the
energy equation.
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(d) Consider,

∇×E = −∇× (v ×B)

= −ϵijk∇jϵklmvlBm

= −ϵkijϵklm∇j(vlBm)

= −(δilδjm − δimδjl)∇j(vlBm)

= −∇j(viBj) +∇j(vjBi)

= ∇j(Bivj − viBj)

= ∇ · (B ⊗ v − v ⊗B)

So,
∂B

∂t
+∇ · (B ⊗ v − v ⊗B) = 0

(e) HLL approximate Riemann solver - ideal MHD v.s. compressible Euler,

Similarities:

• We assume the Rankine-Hugoniot conditions govern the intermediate state for both
MHD and Euler.

fHLL − fL/R = SS/L(u
HLL − uL/R)

• Intermediate flux still is:

fHLL =
SRfL − SLfR + SLSR(uR − uL)

SR − SL

Differences:

• Wave speed estimate for SL and SR, instead of sound speed, we use the fast wave
speed:

SL = min(vL, vR)−max(cf,L, cf,R) , SR = min(vL, vR) + max(cf,L, cf,R)

(f) HLLC v.s. HLL approximate Riemann solver,

If the normal component of the magnetic field is non-zero, a contact discontinuity in MHD
has only a density discontinuity, thereby requiring continuous tangential fluid velocities
and magnetic field components.

No change:

• Wave speed estimates do not change, nor do the estimates for the intermediate states
of the fluid variables (ρ, v, U, p).

Changes:

• The standard HLLC states cannot be used for the magnetic field variables [By,z and
BxBy,z and B · v], because the resultant scheme is not consistent with integral form
of the conservation law.

• For these variables, the HLL value is used. B∗
y,z = BHLL

y,z and (B ·u)∗ = BHLL ·uHLL.
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Extra note:

•

S∗ =
ρRvx,R(SR − vx,R)− ρLvx,L(SL − vx,L) + (pL −B2

x,L)− (pR −B2
x,R)

ρR(SR − vx,R)− ρL(SL − vx,L)

also,
p∗ = ρ(SK − vx,K)(S

∗ − vx,K) + p−B2
x,K + (BHLLC

x,K )2

To satisfy the assumption p∗L = p∗R with the definition of S∗, we need B∗
x,L = B∗

x,R.

• In order to satisfy the consistency condition as follows:

S∗ − SL

SR − SL

uHLLC
L +

SR − S∗

SR − SL

uHLLC
R =

SRuR − SLuL − (fR − fL)

SR − SL

= uHLL

We need B∗
x,LB

∗
y,L = B∗

x,RB
∗
y,R and B∗

x,LB
∗
z,L = B∗

x,RB
∗
z,R.

Hence, B∗
y,L = B∗

y,R and B∗
z,L = B∗

z,R.

• Finally, we just assign HLL states to them: B∗
x = BHLL

x , B∗
y = BHLL

y and B∗
z = BHLL

z .

• Consider the consistency condition for energy equation, we get: (B · v)∗L = (B · v)∗R.
Assigning HLL values to them, (B · v)∗ = BHLL · vHLL.

∴ Magnetic field components and B ·v is continuous across the contact discontinuity.

(g) Mathematically, provided the initial data obeys the divergence constraint ∇·B = 0, then
all the solutions will continue to obey the constraint.

(h) Numerically, numerical errors can cause violation of ∇ ·B = 0 (the divergence does not
completely vanish), and these errors grow. Lead to instability and conservation errors.

(i) Divergence cleaning: the idea is to evolve away any errors that appear in the divergence
constraint. We do this by introducing a new variable ψ in the evolution equation of B,
and also it evolved itself:{

∂B
∂t

+∇ · (B ⊗ v − v ⊗B) +∇ψ = 0

D(ψ) +∇ ·B = 0

where D is chosen such that the divergence errors are transported to the domain boundaries
with the maximal admissible speed (advection term) and are damped (diffusion term) at
the same time.

⇒ D(ψ) =
1

c2h

∂ψ

∂t
+

1

c2p
ψ

where ch is the hyperbolic wave speed and is the speed of propagation of the divergence
errors. We choose ch to be the maximum possible wave speed:

ch = max(|vx|+ cf,x, |vy|+ cf,y, |vz|+ cf,z)

cp is the parabolic damping term for ψ. They have the relationship:

c2p = 0.18× ch
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3.3 Q3

3. (a)

α =
xB − xi−1/2

∆x

(b)

∆t = C
αx

amax

(c) The stabilised flux is defined such that the timestep of the overall simulation is not reduced
by a factor of 1

α
. It tackles the small cell problem, where existence of small cells constrain

the explicit stable ∆t.

(d) We extend the influence of the cut cell to the regular cell size ∆x, we have a stable but
not conservative update formula:

ūn+1
i = uni +

∆t

∆x
(fn

i−1/2 − fn
B)

The conservative update accounts for the size of cut cell, but we now have an unknown
flux:

ûn+1
i = uni +

∆t

α∆x
(f ∗,n

i−1/2 − fn
B)

We solve for the unknown stabilised flux,

fn
i−1/2 − fn

B =
1

α
(f ∗,n

i−1/2 − fn
B)

f ∗,n
i−1/2 = fn

B + α(fn
i−1/2 − fn

B)

As α → 1, f ∗,n
i−1/2 → fn

i−1/2.

As α → 0, f ∗,n
i−1/2 → fn

B.

(e)

• Shielded flux: red and blue dot.

• Unshielded flux: green dot.
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(f)

• 4 possible values for α: two for a cell cut along at least one x-edge, two for a cell cut
along at least one y-edge. In each case, there is a volume fraction corresponding to
the region between the shielded flux (singly or doubly) and the cut, and between two
unshielded edges.

• 4 possible values of β: two for the regions along the x-axis not occupied by the rigid
object, and two along the y-axis. Unshielded and shielded.

• 2 possible values for the average distance to the interface:

Total flux is the area weighted average:

FC =
1

βC

(
βUSF

US,n + βSS,LF
SS,L,n + βSS,RF

SS,R,n + βDDF
DS,n

)
where βC = βUS + βSS + βDS.

(g)
fi−1/2,j = βi+1/2,jf

US
i−1/2,j + (βi−1/2,j − βi+1/2,j)f

SS
i−1/2,j

(h) A doubly shielded cell is where a concave feature exists in the cut cell geometry. It is a
region that face the boundary from the left and right sides.
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4 2020-21 (EXAM)

4.1 Q1

1. (a) Hyperbolic conservation laws are solved using explicit update and hence will be limited
by the CFL condition. This means the maximum stable time step is proportional to the
size of the smallest cell. The ”small cell problem” happens when the existence of a small
cell cause the maximum stable time step to become too small. As a result, the numerical
solution becomes too computationally expensive and inefficient.

(b) Cell merging: combining cut cells with their neighbours to produce a larger cell with α
at least 0.5, to bypass the CFL stability restriction.

Advantage: Conceptually simple solution.
Disadvantage: Difficult to program, as cell merging modifies the Cartesian state and flux
data structure, and we have to keep track of merged cells. Reduces the accuracy of the
solution at the boundary.

Alternatives to avoid the problem of tracking merged cells:

Cell merging variants

• Cell linking: keep cut cells distinct in the data structure, but algorithmically treat
them as merged during time integration.

• State mixing: keep cut cells distinct in the data structures, and cell merged states
are attained using mixing terms.

• State redistribution: similar to state mixing but allow overlapping merging neigh-
bourhoods.

Others

• Flux redistribution: apply only α times the explicit flux update to the cut cell,
while redistributing the remaining flux to the neighbours. (first order at boundary)

• Flux stabilisation: modifies the flux at the cut cell to produce a stable update for
the cut cell using KBN or LPFS procedure. Dimensionally split, simple to implement
and can be extended to 3D problems. (first order at boundary)

(c) Conservative update (may not be stable):

Un+1
−1 = Un

−1 +
a∆t

α∆x
(Un

−2 − Un
−1)

Un+1
0 = Un

0 +
a∆t

∆x
(Un

−1 − Un
0 )

Un+1
1 = Un

1 +
a∆t

α∆x
(Un

0 − Un
1 )

Un+1
2 = Un

2 +
a∆t

∆x
(Un

1 − Un
2 )
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(d) After merging procedure:

∆x

(
M−1 + αM−1 +

1

2
(M−1 +M1) + αM1 +M1

)
= ∆x

(
3

2
+ α

)
(M−1 +M1)

= ∆x

(
3/2 + α

2 + α

)
(Un+1

−2 + αUn+1
−1 + 2Un+1

0 + αUn+1
1 + Un+1

2 )

= ∆x

(
3 + 2α

2(2 + α)

)
(Un+1

−2 + αUn+1
−1 + 2Un+1

0 + αUn+1
1 + Un+1

2 )

̸= pre-merged mass

The naive cell merging procedure is not conservative.

(e)

Ûn+1
1 =M∗

1

=
1

∆x/2 + α∆x+∆x/3

(
∆x

2
(Un

2 + c(Un
1 − Un

2 )) + α∆x
(
Un
1 +

c

α
(Un

0 − Un
1 )
)
+

∆x

3
Un+1
0

)
=

1

5/6 + α

(
1

2
(1− c)Un

2 +

(
1

2
c+ α− c

)
Un
1 + cUn

0 +
1

3
(Un

0 + c(Un
−1)− Un

0 )

)
=

6

5 + 6α

(
1

2
(1− c)Un

2 +

(
α− 1

2
c

)
Un
1 +

(
1

3
+

2

3
c

)
Un
0 +

1

3
cUn

−1

)
=

6

5 + 6α

(
2 + 4c

6
Un
0 +

6α− 3c

6
Un
1 +

3− 3c

6
Un
2 +

2c

6
Un
−1

)
=

2 + 4c

5 + 6α
Un
0 +

6α− 3c

5 + 6α
Un
1 +

3− 3c

5 + 6α
Un
2 +

2c

5 + 6α
Un
−1

where c = a∆t
∆x

is the Courant number.
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4.2 Q2

2. ADER Procedure:

(a) First-order reconstruction polynomial:

pi(x) = uni + (x− xi)∆i and pi+1(x) = uni+1 + (x− xi+1)∆i+1

where ∆i =

(b) GRP: PDE + IV
PDE: ∂tu+ λ∂xu = βu

IV : u(x, 0) =

{
pi(x) if x < 0

pi+1(x) if x > 0

(c) Approximate solution at the cell interface to find Godunov state, using Taylor expansion
in time:

ui+1/2(τ) = u(0, 0+)︸ ︷︷ ︸
leading-order

term

+
m∑
k=1

[
∂
(k)
t u(0, 0+)

τ k

k!

]
︸ ︷︷ ︸

higher-order term

where
u(0, 0+) = lim

t→0+
u(0, t)

The location of the interface is at x = 0. 0+ is the time slightly above t = 0.

Keeping only terms to first-order derivative in t:

ui+1/2(τ) = u(0, 0+) + τ
∂u(0, 0+)

∂t

(d) For the leading-order term, we get it by solving the classical piece-wise constant RP:

PDE: ∂tu+ λ∂xu = 0

IC: u(x, 0) =

{
pi(0) = uni +

1
2
∆i∆x if x < 0

pi+1(0) = uni+1/2 −
1
2
∆i+1∆x if x > 0

One-wave solution for linear-advection equation (eigenvalue = λ):

di+1/2(x/t) =

{
uni +

1
2
∆i∆x if x/t < λ

uni+1/2 −
1
2
∆i+1∆x if x/t > λ

Hence, along the interface where x/t = 0:

u(0, 0+) =

{
uni +

1
2
∆i∆x if λ > 0

uni+1 − 1
2
∆i+1∆x if λ < 0

Since λ > 0, u(0, 0+) = uni +
1
2
∆i∆x
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(e) For the higher-order terms, we first use the Cauchy-Kovalevskaya procedure to relate
temporal to spatial derivative:

∂tu = −λ∂xu
So,

ui+1/2(τ) = u(0, 0+) + τ(−λ∂xu)
ui+1/2(τ)− u(0, 0+)

τ
+ λ∂xu = 0

∂tu+ λ∂xu = 0

∂t(∂xu) + λ∂x(∂xu) = 0

We then need to solve the classical RP for spatial derivatives:

PDE: ∂t(∂xu) + λ∂x(∂xu) = 0

IC: ∂xu =

{
∆i if x < 0

∆i+1 if x > 0

(f) Solution to the classical RP for spatial derivative:

∂xdi+1/2(x/t) =

{
∆i if x/t < λ

∆i+1 if x/t > λ

Hence, the Godunov state at the interface is:

∂xu(0, 0+) =

{
∆i if λ > 0

∆i+1 if λ < 0

Since λ > 0, ∂xu(0, 0+) = ∆i.

ui+1/2(τ) = uni +
1

2
∆i∆x+ τ

(
−λ∆i + β

(
uni +

1

2
∆i∆x

))
So, with τ = 1

2
∆t

fi+1/2 = λ

(
uni +

1

2
∆i∆x−

1

2
c∆i∆x+

1

2
c∆i∆x− τλ∆i +

1

2
r

(
uni +

1

2
∆i∆x

))
fi+1/2 = λ

(
uni +

1

2
(1− c)∆i∆x+

�����������1

2
c∆i∆x−

1

2
c∆x∆i +

1

2
r

(
uni +

1

2
∆i∆x

))
fi+1/2 = λ

(
uni +

1

2
(1− c)∆i∆x+

1

2
r

(
uni +

1

2
∆i∆x

))
(g) Consider first-order temporal Taylor expansion and Cauchy-Kovalevskaya procedure,

ui(xi, τ) = ui(xi, 0+) + τ∂t(xi, 0+)

ui(xi, τ) = ui(xi, 0+) + τ(−λ∂xui(xi, 0+) + βui(xi, 0+))

We know ui(xi, 0+) = uni (not at interface) and ∂x(xi, 0+) = ∆i.

si = βui(xi, τ)

= β

(
uni +

1

2
∆t(−λ∆i + βuni )

)
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(h)

un+1
i = uni −

∆t

∆x
(fi+1/2 − fi−1/2) + ∆tsi

fi+1/2 = λ

(
uni +

1

2
(1− c)∆i∆x+

1

2
r

(
uni +

1

2
∆i∆x

))
fi−1/2 = λ

(
uni−1 +

1

2
(1− c)∆i−1∆x+

1

2
r

(
uni−1 +

1

2
∆i−1∆x

))
si = β

(
uni +

1

2
∆t(−λ∆i + βuni )

)
Hence,

un+1
i = uni − c

[
(uni − uni−1) +

1

2
(1− c)∆x(∆i −∆i−1) +

1

2
r(uni − uni−1)

+
1

4
r∆x(∆i −∆i−1))

]
+∆tβ

(
uni +

1

2
∆t(−λ∆i + βuni )

)

un+1
i = uni − c

[
(uni − uni−1) +

1

2
(1− c)∆x(∆i −∆i−1)

]
− cr

[1
2
(uni − uni−1) +

1

4
∆x(∆i −∆i−1))

]
+ r

(
uni −

1

2
c∆x∆i +

1

2
runi

)

un+1
i = uni − c

[
(uni − uni−1) +

1

2
(1− c)∆x(∆i −∆i−1)

]
− cr

[
1

2
(uni − uni−1) +

1

4
∆x(∆i −∆i−1))

]
+ r

[(
1 +

1

2
r

)
uni −

1

2
c∆x∆i

]
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4.3 Q3

3. (a) Reference state: the shape of the solid when not subjected to any stress.

(b) • Elastic deformation: When the applied stress is removed, the solid will relax back
to its reference state. Can be linear elastic (stress ∝ strain), hyperelastic (non-linear
stress-strain) or Cauchy-elastic (path-dependent deformation).

• Plastic deformation: When the applied stress is removed, the solid will not fully
recover to its reference state but remain deformed to some extent permanently. Flow
plasticity theory.

• Fracture: Due to the applied stress, the solid cracks and undergoes damage. New
interfaces are formed. With sufficient damage, the solid fails and some part of this
material disconnects with some other parts.

(c)

ρ =
m

V
=

m

det
(

∂xi

∂Xj

)
V0(Xj)

=
ρ0

det(Fij)

where the deformation gradient is defined as:

Fij =
∂xi
∂Xj

V (xi) = det
(

∂xi

∂Xj

)
V0(Xj) = det(Fij)V0(Xj), essentially the deformation gradient acts as

the Jacobian for converting between these two frames of reference.

(d) 2 reasons:

• EoS: stress is generally a function of deformation gradient and specific internal energy.

σ = σ(F , ε)

[No longer p = (γ−1)ρε. Pressure is a function of density and specific internal energy]

• We can express density in terms of the deformation gradient trivially, but we cannot
obtain the deformation gradient (matrix) from density (scalar).

Specifically,

σij = ρFik
∂ε

∂Fkj

and ε = ε(F , s)

(e) Flow plasticity theory: total deformation (gradient) can be decomposed into elastic defor-
mation (gradient) and plastic deformation (gradient):

Fij = F e
ikF

p
kj

(f)
d

dt
Fij − (∇kvi)Fkj = 0

d

dt
F e
ikF

p
kj − (∇kvi)F

e
klF

p
lj = 0
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F e
ik

∂F p
kj

∂t
+

dF e
ik

dt
F p
kj − (∇kvi)F

e
klF

p
lj = 0

F e
ik

dF p
kl

dt
(F p

lj)
−1 +

dF e
ik

dt
F p
kl(F

p
lj)

−1 − (∇kvi)F
e
klF

p
lj(F

p
lj)

−1 = 0

F e
ik

dF p
kl

dt
(F p

lj)
−1 +

dF e
ik

dt
δkj − (∇kvi)F

e
klδlj = 0

F e
ik

dF p
kl

dt
(F p

lj)
−1 +

dF e
ij

dt
− (∇kvi)F

e
kj = 0

dF e
ij

dt
− (∇kvi)F

e
kj = −F e

ik

dF p
kl

dt
(F p

lj)
−1

(g) Yield strength: In a simple stress-strain curve, the yield strength is the point at which
the material stops behaving elastically.

Yield surface: a 6D surface in stress-strain space which define the region inside which
the material behaves elastically. Stressed states outside this surface are not physically
permitted.

(h) If the evolution equation results in stresses outside the yield surface,

• these can be remapped back to the yield surface

• Effectively, we relax the stress, and increase plastic deformation.

• Assuming the deviations beyond the yield surface are small, they can be recovered by
taking the steepest path (in 6D) back to the surface (Miller and Colella).

• Ideal plasticity assumes plastic behaviour can only happen beyond the yield surface.

(i) Small plastic deformation can occur within the yield surface. One example is work hard-
ening, which introduces an additional advected quantity.
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5 2021-22 (EXAM)

5.1 Q1

1. (a) ρ is density. v is the velocity. B is the magnetic field. p is the pressure. U = ρε+ 1
2
ρv2+ 1

2
B2

is the total energy. ρv is momentum. B2 = B · B is the magnitude square of magnetic
field.

(b) Mass equation:
∂ρ

∂t
+∇i(ρvi) = 0

∂ρ

∂t
+
∂ρvx
∂x

+
∂ρvy
∂y

+
∂ρvz
∂z

= 0

Momentum equation:

∂ρvj
∂t

+∇i

[
ρvjvi +

(
p+

1

2
B2

)
δij −BjBi

]
= 0

∂ρvj
∂t

+
∂

∂x

[
ρvjvx +

(
p+

1

2
B2

)
δjx −BjBx

]
+
∂

∂y

[
ρvjvy +

(
p+

1

2
B2

)
δjy −BjBy

]
+
∂

∂z
[z-term]

Energy equation:
∂U

∂t
+∇i

[(
U + p+

1

2
B2

)
vi − vjBjBi

]
= 0

∂U

∂t
+
∂

∂x

[(
U + p+

1

2
B2

)
vx − (v ·B)Bx

]
+
∂

∂y

[(
U + p+

1

2
B2

)
vy − (v ·B)By

]
+
∂

∂x
[z-term] = 0

Magnetic field equation:
∂Bj

∂t
+∇i(Bjvi − vjBi) = 0

∂Bj

∂t
+

∂

∂x
(Bjvx − vjBx) +

∂

∂y
(Bjvy − vjBy) +

∂

∂z
(Bjvz − vjBz) = 0

Hence, collecting everything:

f(u) =



ρvx
ρv2x +

(
p+ 1

2
B2
)
−B2

x

ρvyvx −ByBx

ρvzvx −BzBx(
U + p+ 1

2
B2
)
vx − (v ·B)Bx

0
Byvx − vyBx

Bzvx − vzBx


, g(u) =



ρvy
ρvxvy −BxBy

ρv2y +
(
p+ 1

2
B2
)
−B2

y

ρvzvy −BzBy(
U + p+ 1

2
B2
)
vy − (v ·B)By

Bxvy − vyBx

0
Bzvy − vzBy



h(u) =



ρvz
ρvxvz −BxBz

ρvyvz −ByBz

ρv2z +
(
p+ 1

2
B2
)
−B2

z(
U + p+ 1

2
B2
)
vz − (v ·B)Bz

Bxvz − vzBx

Byvz − vyBz

0
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(c) In 1D, we have 7 evolution equations.

∂g

∂y
=
∂h

∂z
= 0

The evolution equation for Bx becomes:

∂Bx

∂t
= 0

Hence, Bx is always constant in time and its evolution equation disappears.

(d) Maximum number of waves is 7. None of these waves are degenerate as we would find 7
distinct, real eigenvalues of the system.

(e) We have one contact discontinuity, two fast waves, two Alfvén waves and two slow waves.

λ = vx , vx ± csl , vx ± ca , vx ± cf

Properties of MHD waves:

• Across contact discontinuity, only density jumps. Magnetic field, pressure and
velocity is continuous.

{ ρ , v⊥ , v∥ , p , B⊥ , B∥}

• Slow waves can be a shock, rarefaction or tangential discontinuity.

In the limiting case, it is a tangential discontinuity when velocity and magnetic
field are parallel to the wave. All variables jump except pressure and normal
velocity.

{ ρ , v⊥ , v∥ , p , B⊥ , B∥ }

• Alfvén waves are rotational discontinuities. Across a rotational discontinuity, only
magnetic field components jump, while the rest are continuous including magni-
tude of magnetic field.

{ρ , v⊥ , v∥ , p , |B| , Bx , , By , , Bz }

• Fast waves can be a shock or rarefaction.

Across a shock wave, all variables jump.
Across a rarefaction, no variables jump, all are continuous.

Note: possible variables: {ρ , v⊥ , v∥ , p , B⊥ , B∥}.
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(f) Divergence Constraint

The divergence constraint is:
∇ ·B = 0

• It is a constraint on the solution to avoid magnetic monopoles.

• Numerical errors building up can cause violation of the divergence constraint.

• Solutions which violate the divergence constraint may not be stable.

• Over time, errors build up and may lead to oscillations.

(g) ch is the hyperbolic wave speed, which is the speed of propagation of divergence error,
chosen to be the maximum wave speed over the entire domain:

ch = max(|vx|+ cf,x, |vy|+ cf,y, |vz|+ cf,z)

cp is the parabolic damping term, found through numerical experiment to be:

c2p = 0.18ch

The effect of the divergence cleaning treatment is that the divergence errors are transported
to the domain boundaries with the maximal admissible speed and are damped at the same
time.

(h) A hyperbolic system has real and distinct eigenvalues.

The divergence cleaning treatment introduces a new unknown ψ which couples the di-
vergence constraint to the hyperbolic system. This introduces an additional evolution
equation into the MHD equations and modifies the evolution equation for Bx:

∂ψ

∂t
+ c2h

∂Bx

∂x
= −c

2
h

c2p
ψ and

∂Bx

∂t
+
∂ψ

∂x
= 0

We can express the new MHD system of equations as:

∂tW + A(W )∂xW = 0

where W = (ρ, ux, uy, uz, U,Bx, By, Bz, ψ)
T . Looking at the eigenstructure of A, we see

that these two equations has no dependence on ux, this means that the equations of Bx

and ψ can be decoupled from the remaining system.

We now have:

∂

∂t

(
Bx

ψ

)
+

(
0 1
c2h 0

)
∂

∂x

(
Bx

ψ

)
= −c

2
h

c2p

(
0
ψ

)
and ∂tW

′ + A′(W ′)∂xW
′ = 0︸ ︷︷ ︸

original 1D MHD

The eigenvalues of the subsystem are trivially obtained , λ = ch,−ch. The eigenvalues of
the subsystem are distinct from the eigenvalues of the original 1D MHD if ch is sufficiently
large. We have 9 real and distinct eigenvalues. Hence, the system is hyperbolic.
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(i) Alternative approach: constrained transport.

• Description: it uses a staggered grid to store magnetic fields

• Advantage: we can show this is divergence free by construction. (imitates the analyt-
ical fact that the divergence of a curl equals zero)

• Disadvantage: more difficult to implement as it requires code structure to be written
to follow this staggered grid approach - may need to start from scratch.

(j) In 1D, all y- and z- derivatives vanish. So the divergence constraint is:

∇ ·B =
∂Bx

∂x
= 0

Also in 1D, Bx = constant in time. Hence, the divergence constraint will never be violated.
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5.2 Q2

2. (a) Advected tracer

s(u) =
(
0 0 0 0

)T
Augmented Euler Equations

• The system describes a variable which simply moves with the material velocity.

• An advected tracer quantity has similar properties as the underlying material i.e.
it has same equation of state as the underlying material.

• This equation will then model the concentration of this quantity as it moves with
the flow.

• E.g. the spreading of food colouring in water.

Reactions: to achieve a model for reactions (e.g. detonation/reactive material), we
simply have:

s(u) =
(
0 0 rate of energy change rate of reaction

)T
The reaction rate is commonly modelled by an Arrhenius law or a pressure-based law.

(b) λ is the reaction progress variable which tells us how much of the reactants has turned
into products.

(c) • The augmented Euler equations can model either the reactant or the product.

• As a result, energy may be added or removed from the material depending on whether
it is being created or not.

• Energy can either be released (exothermic) or absorbed (endothermic) during the
reaction.

(d) Source term and stable time step

How source term adversely affect stable time step:

• Source term model a physical process which is not included in the conservation
law i.e. described through the gradient of material quantities.

• It will have its own timescale, which may be different from the acoustic time scales
of the simulation.

• If the source term timescale is much smaller than one obtained from the CFL
condition, the choice of a minimum stable time step ∆t = min(∆tCFL,∆ts) gives
a lower time step than necessary.

• This leads to many iterations of the conservation law part of the system, resulting
in unnecessary accumulation of error and greater computational expense.
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Two techniques to avoid this error:

i. Implicit scheme:

• A timestep independent scheme can be used to update the source term.

• Most applicable for diffusive (parabolic) sources.

• These can have contribution across the entire numerical domain due to infinite
propagation speed.

• Requires a computationally expensive matrix inversion procedure.

• If ∆ts ≪ ∆tCFL, it may be more efficient to solve the source term implicitly.

• If error accumulation for explicit update is large, then for the same accuracy,
implicit schemes might be more efficient.

ii. Subcycling (explicit scheme):

• Update the source term at its own stable time step ∆ts multiple times for
each acoustic timestep (∆tCFL) of the system.

• The evolution must be stopped once the ∆tCFL is reached, and the states now
exists at the same time.

• Most appropriate when there is local behaviour based on the properties of a
single cell e.g. chemical reaction (where the speed of conversion of reactants
into products is much faster than the speed with which the material moves).

Decision: which scheme can achieve a given accuracy fastest?

(e) Use subcycling, due to the fact that the reaction occurs through a chemical, cell-based
process.

(f) For cylindrically symmetric, ignore θ terms, we only have dependence on r and z.

∇ · f =
∂fr
∂r

+
∂fz
∂z

+
fr
r

For mass equation:
∂ρ

∂t
+∇i(ρvi) = 0

∂ρ

∂t
+

∂

∂r
(ρvr) +

∂

∂z
(ρvz) +

ρvr
r

= 0

For momentum equation:
∂ρvi
∂t

+∇j(ρvivj) +∇i(p) = 0

∂ρvi
∂t

+
∂

∂r
(ρvivr + pδir) +

∂

∂z
(ρvivz + pδiz) +

ρvivr
r

= 0

The pressure term is a gradient, not a divergence, so it does not appear in the source term.

For energy equation:
∂E

∂t
+∇i((E + p)vi) = ±ρKQ
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∂E

∂t
+
∂(E + p)vr

∂r
+
∂(E + p)vz

∂z
+

(E + p)vr
r

= ±ρKQ

For tracer/reaction rate equation:

∂ρλ

∂t
+∇i(ρλvi) = ρK

∂ρλ

∂t
+

∂

∂r
(ρλvr) +

∂

∂z
(ρλvz) +

ρλvr
r

= ρK

Combining everything:

∂

∂t


ρ
ρvr
ρvz
E
ρλ

+
∂

∂r


ρvr

ρv2r + p
ρvzvr

(E + p)vr
ρλvr

+
∂

∂z


ρvz
ρvrvz
ρv2z + p

(E + p)vz
ρλvz

 = −1

r


ρvr
ρv2r
ρvzvr

(E + p)vr
ρλvr

+


0
0
0

±ρKQ
ρK


The source terms are made up of a physical source term and geometric source term.

(g) Operator splitting separates the conservation law update and the source term update.
Consider two operations to give a first-order update:

un+1 = S(∆t)C(∆t)(un)

• First, C(∆t): ignore the source term and solve the PDE as a conservation law over time
∆t to get an intermediate state ūn+1.

PDE: ∂u
∂t

+∇ · f(u) = 0

IC: un

}
= ūn+1

• Then, S(∆t): ignore the divergence operator and solve the balance law ODE over ∆t
using the intermediate state to get final state un+1.

ODE: du
dt

= s(u)

IC: ūn+1

}
= un+1

First order is:
un+1 = ūn+1 +∆ts

(h) Solve the ODE using a Runge-Kutta scheme (slope approximation).

• Fourth-order explicit RK4 (original RK method):

– Start with a first-order step.

– Perform subsequent evolutions with this.

– Eventual update is a weighted average of these four evolution steps.

K1 = ∆t · s(ūn+1)

K2 = ∆t · s
(
ūn+1 +

1

2
K1

)
and K3 = ∆t · s

(
ūn+1 +

1

2
K2

)
K4 = ∆t · s(ūn+1 +K3)

Then,

un+1 = ūn+1 +
1

6
(K1 + 2K2 + 2K3 +K4)
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• Second-order accuracy (Heun’s method):

K1 = ∆t · s(ūn+1) and K2 = ∆t · s(ūn+1 +K1)

un+1 = ūn+1 +
1

2
(K1 +K2)

5.3 Q3

3. Same question as 2024-25 (Mock) Q3. Link
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6 2023-24 (EXAM)

6.1 Q1

1. Same question 2024-25 (Mock) Q1. Link

6.2 Q2

2. (a) First, extend influence of cut cell to full cell length using stable time-step ∆t and the
update is (stable, not conservative):

Un+1
i = Un

i −
∆t

∆x
(F b,n − F n

i−1/2)

Then, realise that the desired conservative update is obtained using the stabilised flux
(conservative, not stable):

Un+1
i = Un

i −
∆t

α∆x
(F b,n − FKBN,n

i−1/2 )

Equating:

F b,n − F n
i−1/2 =

1

α
(F b,n − FKBN,n

i−1/2 )

FKBN,n
i−1/2 = F b,n + α(F n

i−1/2 − F b,n)

(b) It represents the propagation of information from cell xi where the slope of the line is the
maximum wave speed.

(c) To ensure stability, we increase the influence of the cut cell by just enough to α2∆x (rather
than to the full cell length in a typical KBN flux), such that waves in the cell xi do not
overlap with waves in the cell xi−1 in a single time-step. Repeating the same procedure as
for KBN flux:

Un+1
i = Un

i −
∆t

α2∆x
(F b,n − F n

i−1/2) and Un+1
i = Un

i −
∆t

α∆x
(F b,n − FKBN,mod,n

i−1/2 )

We get:

FKBN,mod,n
i−1/2 = F b,n +

α

α2

(F n
i−1/2 − F b,n)

(d) α ∈ [0, 1]. α2 ∈ [α, 1]

(e) It means we get:
FKBN,mod,n

i−1/2 = F n
i−1/2

there is no need for flux stabilisation of the cut cell. This happens when the maximum
wave speed in the cut cell is

amax,i = α
∆x

∆t

where α is coincidentally the Courant number.
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(f) LPFS flux goes further to propose that no flux stabilisation is required for the fraction of
time ∆tcc

∆t
, in which the wave from cell i has yet to reach the neighbouring cell. For the

remaining fraction of time 1− ∆tcc
∆t

, the flux is stabilised using the modified KBN method.
Hence,

F LPFS,n
i−1/2 =

∆tcc
∆t

F n
i−1/2 +

(
1− ∆tcc

∆t

)
FKBN,mod,n

i−1/2

(g) Characteristic speed for linear advection is a. We consider the stable time-step for a regular
cell and the cut cell:

∆tcc = C
α∆x

amax,i

and ∆t = C
∆x

amax

Dividing,
∆tcc
∆t

= α
amax

amax,i

For linear advection, the characteristic speed is the same everywhere (amax = amax,i).
Hence,

∆tcc
∆t

= α

Also, by geometry we get
∆tcc
∆t

=
α

α2

Hence, α2 = 1.

(h)

F LPFS,n
i−1/2 = αF n

i−1/2 + (1− α)FKBN,mod,n
i−1/2

= αF n
i−1/2 + (1− α)

[
F b,n + α(F n

i−1/2 − F b,n)
]

= αF n
i−1/2(1 + 1− α) + (1− α)[F b,n(1− α)]

= α(2− α)F n
i−1/2 + (α− 1)2F b,n

From Un+1
i = Un

i − ∆t
α2∆x

(F b,n − F n
i−1/2), if α2 = 1, it becomes the familiar cell update

with F b,n = F n
i+1/2,

F LPFS,n
i−1/2 = α(2− α)F n

i−1/2 + (α− 1)2F n
i+1/2

(i) For F n
i+1/2 = 0,

F LPFS,n
i−1/2 = α(2− α)(F n

i−1/2)

What is consistency? Local truncation error of method vanish as ∆t,∆x→ 0.

Un+1
i = Un

i − ∆t

α∆x
(���F b,n − FLPFS,n

i−1/2 )

= Un
i +

∆t

α∆x

[
α(2− α)F n

i−1/2

]
= Un

i + (2− α)
∆t

∆x
F n
i−1/2

= Un
i + (2− α)

a∆t

∆x
Un
i−1
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Consider truncation error analysis:

Lui =
un+1
i − uni
∆t

− a(2− α)
uni−1

∆x

= ut(xi, t
n)− a(2− α)

uni − 1+α
2
∆xux(xi, t

n)

∆x
+O(∆x,∆t)

= −aux(xi, tn)− a(2− α)
uni
∆x

+ a(2− α)
1 + α

2
ux(xi, t

n) +O(∆x,∆t)

= aux(xi, t
n)

(
−1 + 1− 1

2
α + α− 1

2
α2

)
− a(2− α)

∆x
uni +O(∆x,∆t)

=
1

2
α(1− α)aux(xi, t

n)− a(2− α)

∆x
uni +O(∆x,∆t)

The truncation error does not vanish as ∆x,∆t→ 0, the method is not consistent.

(j) Supraconvergence

• Although truncation error analysis fails to prove the consistency of the numerical
method, numerical tests show that LPFS does converge with first order accuracy.

• The aim is to find another grid function w which differs from the grid function of u
(real solution) by an O(∆x) amount, and for which the truncation error in all cells is
O(∆t,∆x).

w = u+O(∆x)

Our consistency analysis is now:

|wi − Ui| = O(∆x,∆t) ∀i

• Although our numerical scheme is not consistent with our exact solution ui, we can
show that it does consistently solve for another grid function wi.

• Ultimately, we are concerned with the behaviour of the method as ∆x → 0. By
showing consistency with wi, our method is effectively consistent in the desired limit
∆x→ 0.

It shows that LPFS is consistent.
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6.3 Q3

3. (a) Deformation gradient:

Fij =
dxi
dXj

(b)
I1 = Tr(A)

I2 =
1

2
(Tr(A) Tr(A)− Tr(AA))

(c) Symmetric means AT = A. Consider

CT = (F−TF−1)T = (F−1)T (F−T )T = F−TF−1 = C

The finger tensor is symmetric.

(d) For Finger tensor,

I3 = det(C)

= det
(
F−TF−1

)
= det

(
F T
)−1

det(F )−1

= det(F )−1 det(F )−1

= det(F )−2

=
ρ2

ρ20

(e)
∂IC,1

∂Cij

=
∂Ckk

∂Cij

= δij

Only differentiates to 1 iff i = j.

(f) Consider,

∂IC,2

∂Cij

=
1

2

[
∂(CkkCmm − CkmCmk)

∂Cij

]
= Ckk

∂Ckk

∂Cij

− 1

2
Ckm

∂Cmk

∂Cij

− 1

2
Cmk

∂Ckm

∂Cij︸ ︷︷ ︸
C is symmetric

= IC,1δij − Ckm
∂Ckm

∂Cij

and

∂IC,3

∂Cij

=
∂ det(Cij)

∂Cij

= det(Cij)(C
−1)ji

= IC,3(C
−1)ji
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σij = −2ρCik
∂IC,l

∂Ckj

∂ε

∂IC,l

= −2ρCik

[
∂IC,1

∂Ckj

∂ε

∂IC,1

+
∂IC,2

∂Ckj

∂ε

∂IC,2

+
∂IC,3

∂Ckj

∂ε

∂IC,3

]
= −2ρCik

[
δkj

∂ε

∂IC,1

+

(
IC,1δkj − Clm

∂Clm

∂Ckj

)
∂ε

∂IC,2

+ IC,3(C
−1)jk

∂ε

∂IC,3

]
= −2ρ

[
Cij

∂ε

∂IC,1

+ IC,1Cij
∂ε

∂IC,2

− CikClm
∂Clm

∂Ckj

∂ε

∂IC,2

+ IC,3CikC
−1
jk

∂ε

∂IC,3

]
= −2ρ

[(
∂ε

∂IC,1

+ IC,1
∂ε

∂IC,2

)
Cij − CijClmδlkδmj

∂ε

∂IC,2

+ IC,3δij
∂ε

∂IC,3

]
= −2ρ

[(
∂ε

∂IC,1

+ IC,1
∂ε

∂IC,2

)
Cij − CijCkj

∂ε

∂IC,2

+ IC,3
∂ε

∂IC,3

δij

]

(g)

∂ε

∂IC,1

=
b20I

βR/2
C,3

3
IC,1

∂ε

∂IC,2

= −
b20I

βR/2
C,3

2

∂ε

∂IC,3

=
K0

α2
R

(I
αR/2
C,3 − 1)

αR

2
I
αR/2−1
C,3 + cV T0

γR
2
I
γR/2−1
C,3 (es/CV − 1) +

b20
2

βR
2
I
βR/2−1
C,3

(
I2C,1

3
− IC,2

)
=

K0

2αR

(I
αR/2
C,3 − 1)I

αR/2−1
C,3 +

cV T0γR
2

(es/CV − 1)I
γR/2−1
C,3 +

b20βR
4

(
I2C,1

3
− IC,2

)
I
βR/2−1
C,3

σij = −2ρ

[(
b20I

βR/2
C,3

3
−
b20I

βR/2
C,3

2
IC,1

)
Cij +

(
b20I

βR/2
C,3

2

)
CijCkj + IC,3

∂ε

∂IC,3

δij

]

(h) • Linear elastic: stress ∝ strain.

• Hyperelastic: non-linear stress-strain e.g. high strain rate simulation of solid materials.

• Cauchy-elastic: path-dependent work done by stress.
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7 2024-25 (Mock)

7.1 Q1

1. Solve on paper during Mock exam.

7.2 Q2

2. Same question as 2021-22 (Exam) Q1. Link

7.3 Q3

3. (a)

γadia = −ν
p

∂p

∂ν

∣∣∣
s
=
ρ

p

∂p

∂ρ

∣∣∣
s

and
∂p

∂ρ

∣∣∣
s
=

p

ρ2 ∂ε
∂p

−
∂ε
∂ρ

∂ε
∂p

ε =
p

ρ(γ − 1)

∂ε

∂p
=

1

ρ(γ − 1)
and

∂ε

∂ρ
= − p

ρ2(γ − 1)

∂p

∂ρ

∣∣∣
s
=

p

ρ2 ∂ε
∂p

−
∂ε
∂ρ

∂ε
∂p

=
pρ(γ − 1)

ρ2
+
ρ(γ − 1)p

ρ2(γ − 1)

=
p(γ − 1)

ρ
+
p

ρ

=
γp

ρ

⇒ γadia =
ρ

p
× γp

ρ
= γ

Hence, the γ in the equation of state is the same as the adiabatic index.

(b) If Γ > 0:

• Temperature varies monotonically along an isentrope

• EoS provides a unique parametrisation of thermodynamic space,

• meaning specific volume, specific internal energy and pressure p(ν, ε), ε(ν, p) and
ν(ε, p) are all single-valued functions of the other two variables.
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(c)

Γ = − ν

T

∂T

∂ν

∣∣∣
s
= − ν

T

[
∂T

∂ρ

∣∣∣
ε

∂ρ

∂ν

∣∣∣
s
+
∂T

∂ε

∣∣∣
ρ

∂ε

∂ν

∣∣∣
s

]
Γ = − 1

Tρ

[
∂T

∂ρ

∣∣∣
ε

(
− 1

ν2

)
+
∂T

∂ε

∣∣∣
ρ
(−p)

]
Γ =

ρ

T

[
∂T

∂ρ

∣∣∣
ε
+

p

ρ2
∂T

∂ε

∣∣∣
ρ

]
where for ds = 0,

Tds = dε+ pdν ⇒ dε = −pdν

(d) Ideal gas:
pν = nRT , p = (γ − 1)ρε

∂s

∂ε

∣∣∣
ν
=

1

T
and

∂s

∂ν

∣∣∣
ε
=
p

T

∂2s

∂ν ∂ε
=

∂

∂ν

(
1

T

) ∣∣∣
ε

and
∂2s

∂ε ∂ν
=

∂

∂ε

( p
T

) ∣∣∣
ν

− 1

T 2

∂T

∂ν

∣∣∣
ε
= − p

T 2

∂T

∂ε

∣∣∣
ν
+

1

T

∂p

∂ε

∣∣∣
ρ

ρ2

T 2

∂T

∂ρ

∣∣∣
ε
= − p

T 2

∂T

∂ε

∣∣∣
ρ
+

1

T
(γ − 1)ρ

∂T

∂ρ

∣∣∣
ε
= − p

ρ2
∂T

∂ε

∣∣∣
ρ
+
T (γ − 1)

ρ

Hence, for ideal gas:

Γ =
ρ

T

(
����������p

ρ2
∂T

∂ε

∣∣∣
ρ
− p

ρ2
∂T

∂ε

∣∣∣
ρ
+
T (γ − 1)

ρ

)
Γ = γ − 1 > 0

OR

Ideal gas:

ε = cV T ⇒ T =
ε

cV
Using expression from previous question,

Γ =
ρ

T

[
p

ρ2
1

cV

]
=

p

TρcV

All quantities are non-negative.

(e) Stiffened gas EoS:
p = (γ − 1)ρ(ε− ε∞)− γp∞

where ρ is density, p is pressure, ε is specific internal energy. p∞ is a reference pressure, a
stiffening parameter to model resistance to compression. ε∞ is the reference energy from
heat of formation. γ is constant.
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(f)

γadia =
ρ

p
c2s and c2s =

p

ρ2 ∂ε
∂p

−
∂ε
∂ρ

∂ε
∂p

ε =
p+ γp∞
(γ − 1)ρ

∂ε

∂p
=

1

(γ − 1)ρ
and

∂ε

∂ρ
= − p+ γp∞

ρ2(γ − 1)

c2s =
p(γ − 1)

ρ
+

(γ − 1)ρ(p+ γp∞)

ρ2(γ − 1)

=
p(γ − 1)

ρ
+
p+ γp∞

ρ

=
γ(p+ p∞)

ρ

Hence,

γadia =
ρ

p

γ(p+ p∞)

ρ
= γSG

(
1 +

p∞
p

)
(g)

Γ = − ν

T

∂T

∂ν

∣∣∣
s

= − ν

T

∂

∂ν

(
ε+ ε∞ − νp∞

cv

) ∣∣∣
s

= − ν

cvT

(
∂ε

∂ν

∣∣∣
s
− p∞

)
= − ν

cvT
(−p− p∞)

=
p+ p∞
cvTρ

(h) In order to have a real sound speed, p is bounded by −p∞ i.e. p+ p∞ > 0. Also, density,
temperature and cV are always non-negative. Hence, the minimum value of Γ is 0.
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8 Appendix

8.1 Ideas of KBN and LPFS method

1. Spatial stabilisation by considering extending influence
to α2∆x instead of ∆x (chosen to give stable ∆t):

F ′
i−1/2 − Fb =

α

α2

(Fi−1/2 − Fb)

KBN method.

2. Temporal stabilisation (LPFS)?:

F ′′
i−1/2 =

(
1− α

α2

)
F ′
i−1/2 +

α

α2

Fi−1/2

F ′′
i−1/2 − F ′

i−1/2 =
α

α2

(Fi−1/2 − F ′
i−1/2)

For the fraction α
α2

of the time step, no flux stabilisation
is necessary. So we can do a linear combination of
stabilised and unstabilised flux. The ultimate aim is to
reduce diffusion of numerical solution.

3. Overall:

FLPFS
i−1/2 = fb +

α

α2

(
2− α

α2

)
(fi−1/2 − fb)

where α2 =
a∆x
∆t

.
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8.2 Derivation of Update Formulas under LPFS

General Flux update: Un+1
i = Un

i − ∆t

∆x

(
fn
i+1/2 − fn

i−1/2

)
General LPFS Flux: FLPFS

i−1/2 = fb +
α

α2

(
2− α

α2

)
(fi−1/2 − fb)

Note: for linear advection: α2 = 1 and fn
i+1/2 = f(Un

i ) = aUn
i for backward difference. The

stabilised flux are fLPFS
3/2 and fLPFS

N−1/2, which affects cells 1, 2, N-1 and N.

FLPFS
N−1/2 = fN+1/2 + αR(2− αR)(fN−1/2 − fN+1/2)

FLPFS
3/2 = f1/2 + αL(2− αL)(f3/2 − f1/2)

Cell N:

Un+1
N = Un

N − ∆t

αR∆x

(
fN+1/2 − FLPFS

N−1/2

)
= Un

N − ∆t

��αR∆x

(
−��αR (2− αR) (fN−1/2 − fN+1/2)

)
= Un

N + c(2− αR)(U
n
N−1 − Un

N)

Cell N-1:

Un+1
N−1 = Un

N−1 −
∆t

∆x

(
FLPFS
N−1/2 − fN−3/2

)
= Un

N−1 −
∆t

∆x

(
fN+1/2 + αR(2− αR)(fN−1/2 − fN+1/2)− fN−3/2

)
= Un

N−1 − c[Un
N + αR(2− αR)(UN−1 − Un

N)− Un
N−2]

= Un
N−1 + c[Un

N−2 − αR(2− αR)(U
n
N−1 − Un

N)− Un
N ]

= Un
N−1 + c[Un

N−2 − αR(2− αR)U
n
N−1 − (α2

R − 2αR + 1)Un
N ]

= Un
N−1 + c[Un

N−2 − αR(2− αR)U
n
N−1 − (α2

R − 1)2Un
N ]

Cell 1:

Un+1
1 = Un

1 − ∆t

αL∆x

(
FLPFS
3/2 − f1/2

)
= Un

i − ∆t

��αL∆x
(��αL(2− αL)(f3/2 − f1/2))

= Un
i + c(2− αL)(U

n
0 − Un

1 )

Likewise for Cell 2 by substitution.
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8.3 Derivation Relating to Gruneisen coefficient

Derivation:

Γ = − ν

T

∂T

∂ν

∣∣∣
s
= ν

∂p

∂ε

∣∣∣
ν

How do we link them? They have different independent variables, (s, ν) and (ε, ν).

∂T

∂ν

∣∣∣
s

↔ ∂p

∂ε

∣∣∣
ν

Consider,
dε(s, ν) = Tds− pdν , Tds(ε, ν) = pdν + dε

We see that the LHS can be extracted using Maxwell’s relations,

∂T

∂ν

∣∣∣
s
=

∂2ε

∂s ∂ν

We attempt to extract the RHS by holding ε constant, we obtain:

p = T
∂s

∂ν

∣∣∣
ε

Then, differentiate w.r.t. ε while holding ν constant,

∂p

∂ε

∣∣∣
ν
= T

∂2s

∂ε ∂ν
+
∂T

∂ε

∣∣∣
ν

∂s

∂ν

∣∣∣
ε
= T

∂2s

∂ε ∂ν
+

���������∂

∂ε

(
∂ε

∂s

) ∣∣∣
ν

∂s

∂ν

∣∣∣
ε
= T

∂2s

∂ε ∂ν

where T = ∂ε
∂s

∣∣
ν
from dε = Tds at constant volume.

∂p

∂ε

∣∣∣
ν
= T

∂

∂ν

(
∂s

∂ε

)
= T

∂

∂ν

(
∂ε

∂s

)−1

= −T
(
∂ε

∂s

)−2 ∣∣∣
ν

∂2ε

∂ν ∂s

= −T 1

T 2
× ∂T

∂ν

∣∣∣
s

= − 1

T

∂T

∂ν

∣∣∣
s

Note: make use of the symmetric property of mixed second-order partial derivatives.

Γ = − ν

T

(
−T ∂p

∂ε

∣∣∣
ν

)
= ν

∂p

∂ε

∣∣∣
ν
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8.4 Derivation of Entropy of Ideal Gas

dε = −pdν + Tds , p = (γ − 1)ρε , ε = cV T , γ =
cp
cV

, cp = cV +R

ε =
pν

γ − 1
⇒ dε =

pdν + νdp

γ − 1

Find s = s(p, ν),

Tds = dε+ pdν

=
pdν + νdp

γ − 1
+ pdν

pν

cV (γ − 1)
ds =

(
p

γ − 1
+ p

)
dν +

ν

γ − 1
dp

1

cV
ds =

γ

ν
dν +

1

p
dp

ds =
cp
ν
dν +

cV
p
dp

⇒ s = cp ln ν + cV ln p+ const.

Find s = s(ε, ν),

Tds = dε+ pdν
ε

cV
ds = dε+ (γ − 1)ρεdν

ds =
cV
ε
dε+

(γ − 1)cV
ν

dν

ds =
cV
ε
dε+

R

ν
dν

⇒ s = cV ln ε+R ln ν + const.
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8.5 Equation of States

Isentropes: lines of constant entropy.

dε = −pdν and cs =

√
∂p

∂ρ

∣∣∣
s

• Adiabatic index: pνγ = const.

γadia = −ν
p

∂p

∂ν

∣∣∣
s
= −∂ ln p

∂ ln ν

∣∣∣
s

• Gruneisen coefficient:

Γ = − ν

T

∂T

∂ν

∣∣∣
s
= −∂ lnT

∂ ln ν

∣∣∣
s
= ν

∂p

∂ε

∣∣∣
ν

• Fundamental derivative: curvature of isentrope ∼ ∂2ν
∂p2

in p − ν plane written in non-
dimensional form.

G =
c4

2ν3
∂2ν

∂p2

∣∣∣
s

and c2 =
∂p

∂ρ

∣∣∣
s
= −ν2 ∂p

∂ν

∣∣∣
s

G =
c4

2ν3
∂

∂p

(
∂ν

∂p

) ∣∣∣
s

=
c4

2ν3
∂ν

∂p

∂

∂ν

(
∂p

∂ν

)−1 ∣∣∣
s

=
c4

2ν3
∂ν

∂p
(−1)

(
∂p

∂ν

)−2
∂2p

∂ν2

∣∣∣
s

=
c4

2ν3
ν2

c2
ν4

c4
∂2p

∂ν2

∣∣∣
s

=
ν3

2c2
∂2p

∂ν2

∣∣∣
s

=
ν2

2γp

∂2p

∂ν2

∣∣∣
s
=

1

2

ρ2

γp

∂c2s
∂ρ

=
1

2

ρ

cs
2cs

∂cs
∂ρ

= ρ
∂cs
∂ρ

∣∣∣
s

If G > 0, isentropes are convex, and we get:

1. Compressive, entropy-increasing shock waves.

2. Expansive rarefactions.

This means sound speed increases across shock waves and decreases across rarefactions.
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1. Ideal gas EoS:
p = (γ − 1)ρε

2. Stiffened gas EoS: model high-pressure liquids (useful to deal with shock waves)

p = (γ − 1)ρε− γp∞

If you have a reactive liquid e.g. explosive liquids, you include a reference energy to account
for the heat of formation.

p = (γ − 1)ρ(ε− ε∞)− γp∞

3. Mie-Grüneisen EoS: model high-pressure solids. Obtain EoS by integrating Gruineisen
parameter, Γ = ν ∂p

∂ε

∣∣
ν
. It represents a family of models from which many EoS are derived.

p(ρ, ε) = Γ(ρ)ρ(ε− εref(ρ)) + pref(ρ)

Usually we are given pref and we have to compute εref by assuming a reference curve.

(a) Along isentrope: integrate dε = −pdν
(b) Along isotherm:

(c) Along shock locus: use the Hugoniot equation obtained after eliminating shock speed
and velocity. It gives all the possible thermodynamic states behind the shock wave/dis-
continuity which satisfy the RH conditions.

ε2 − ε1 =
1

2
(p1 + p2)(ν1 − ν2)

For derivation, see 2018-19M Q2(c)(iii) Link

4. JWL EoS: model explosives, usually for the products of a detonation. It is a Mie-Grüneisen
type EoS with constant Γ, and uses an isentrope reference. It has a region of validity.

5. Hugoniot EoS: model solids under shock. Any EoS that uses the shock locus as the
reference curve for pressure. It represents the locus of all states which can be reached by
shocking a material from a given initial state. It is popular because of linear relationship
between shock velocity and particle velocity in many solids, S ∝ v2 ⇒ S = c0 + sv2, where
c0 is the bulk sound speed. εref is obtained from Hugoniot equation, and derive pref from
RH conditions using reference state (ρ0, 0, 0)

T :

For compression: i.e. ρ ≥ ρ0 so η > 0, we define:

p = K0η(1 +K1η +K2η
2 +K3η

3 + ...+KMη
M)

From RH condition for mass:

ρv = S(ρ− ρ0) ⇒ v = (c0 + sv)η ⇒ v =
c0η

1− sη

53



MPhil Scientific Computing 8 APPENDIX Simulation of Matter under Extreme Conditions

From RH condition for momentum:

ρv2 + p = Sρv ⇒ p = (c0 + sv)ρv − ρv2 =
ρc0η

1− sη

(
c0 +

sc0η

1− sη
− c0η

1− sη

)

pref =
ρc0η

1− sη

c0(1− η)

1− sη
=
c20(1− η)ρη

(1− sη)2
=

c20ρ0η

(1− sη)2

Taylor expanding the denominator:

pref = ρ0c
2
0η
[
1 + 2(sη) + 3(sη)2 + 4(sη)3 + ...

]
εref =

pref
2

(
1

ρ0
− 1

ρ

)
+ ε0 =

prefη

2ρ0
+ ε0

So, Kn = (n+ 1)sn for n ≥ 1.

For expansion i.e. ρ < ρ0 so η < 0:
pref = K0η

εref =
K0η

2

2ρ0
+ ε0

6. Tabulated EoS:

54



MPhil Scientific Computing 8 APPENDIX Simulation of Matter under Extreme Conditions

8.6 Derivation of Thermodynamic Var. for Complete Stiffened Gas EoS

F (ν, T ) = ε− Ts︸ ︷︷ ︸
Fideal

+p∞ν + ϵ∞

= (ε+ ε∞ + νp∞)︸ ︷︷ ︸
identify as
modified U

−Ts

From reference and proof, (p+ p∞)ν = (γ − 1)cvT and we know: p = (γ − 1)ρ(ε− ε∞)− γp∞.

����(γ − 1)cV T = ν[(γ − 1)ρ(ε− ε∞)− γp∞ + p∞]

= ν����(γ − 1)(ρ(ε− ε∞)− p∞)

cV T = ε− ε∞ − νp∞

Hence,

T =
ε− ε∞ − νp∞

cv

Consider,

ds =
∂s

∂ν
dν +

∂s

∂T
dT and p = (γ − 1)ρ(ε− ε∞)− γp∞

Also from Maxwell’s relations:
∂s

∂ν

∣∣∣
T
=
∂p

∂T

∣∣∣
ν

Differentiate EoS w.r.t. T while keeping ν constant,

∂p

∂T

∣∣∣
ν
= (γ − 1)ρ

∂ε

∂T
= (γ − 1)ρcv

Then,

ds =
∂p

∂T

∣∣∣
ν
dν +

cv
T
dT

= (γ − 1)ρcvdν +
cv
T
dT∫ s

s0

ds = (γ − 1)cv

∫ ν

ν0

1

ν
dν + cv

∫ T

T0

1

T
dT

s− s0 = (γ − 1)cv ln

(
ν

ν0

)
+ cv ln

(
T

T0

)
s = s0 + cv

(
(γ − 1) ln

(
ν

ν0

)
+ ln

(
T

T0

))

s = s0 + cv ln

(
T
ν
νγ

T0

ν0
νγ0

)

s = s0 + cv ln

(
(p+ p∞)νγ

(p0 + p∞)νγ0

)
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8.7 Derivations of Sound Speeds

1. Stiffened Gas:

p = (γ − 1)ρε− γp∞ ⇒ ε =
p+ γp∞
(γ − 1)ρ

c2s =
p

ρ2 ∂ε
∂p

−
∂ε
∂ρ

∂ε
∂p

∂ε

∂p
=

1

(γ − 1)ρ
and

∂ε

∂ρ
= − p+ γp∞

(γ − 1)ρ2

[c2s = ρ(γ − 1)

[
p

ρ2
+

p+ γp∞
(γ − 1)ρ2

]
= ρ(γ − 1)

γ(p+ p∞)

ρ2(γ − 1)

=
γ(p+ p∞)

ρ

56



MPhil Scientific Computing 8 APPENDIX Simulation of Matter under Extreme Conditions

8.8 Recommended Papers to Read

1. Divergence cleaning: Dedner, A. et al. Hyperbolic Divergence Cleaning for the MHD
Equations. Journal of Computational Physics 175, 645–673 (2002). Link

2. LPFS Flux: Gokhale, N., Nikiforakis, N. & Klein, R. A dimensionally split Cartesian
cut cell method for hyperbolic conservation laws. Journal of Computational Physics 364,
186–208 (2018). Link

3. Fundamental Derivative: Thompson, P. A. A Fundamental Derivative in Gasdynamics.
The Physics of Fluids 14, 1843–1849 (1971). Link

4. Hugoniot Equation of State: 1. Robinson, A. C. The Mie-Gruneisen Power Equation
of State. https://www.osti.gov/biblio/1762624 (2019) doi:10.2172/1762624. Link

5. HLLC Solver for Magnetohydrodynamics: Li, S. An HLLC Riemann solver for
magneto-hydrodynamics. Journal of Computational Physics 203, 344–357 (2005). Link
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