
Physics A - Condensed Matter Physics

By Shikang Ni

1 Periodic structure

Bravais Lattice

Definition: the Bravais lattice is an infinite array of discrete points, represented mathe-
matically as an array of delta functions. All the lattice points are equivalent and atoms
do not necessarily lie at these points. There are 14 lattice types.

Basis/motif

The repeat unit that exist at each lattice point.

crystal −→ convolution of lattice and basis

1.1 Cubic unit cells

1. Primitive cubic (contains only 1 lattice point) [p]

2. Body centered cubic [I]

3. Face centered cubic [F]

1.2 Wigner-Seitz unit cell

A construction that forms a unique primitive unit cell. Used in reciprocal space.
Method:

1. Select any lattice point as the origin

2. Draw vectors from origin to all neighbouring points. Those vectors are primitive
translation vectors.
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3. Construct planes normal to each vector, intersecting each vector at its midpoint

4. Wigner-Seitz unit cell is region enclosed by the planes

Example: primitive FCC unit cell:

Primitive translation vectors for FCC lattice:

a

2
[110],

a

2
[101],

a

2
[011]

*Each structure can be represented by a set of primitive translation vectors.

1.3 Directions and planes in crystals

Direction: take the edge of unit cells as basis vectors

r = ua+ vb+ wc

written as [u v w] with ū indicating negative. Can be integers or fractional.
Example: set of symmetrically-related directions in cubic lattice is

⟨1 0 0⟩ = {[1 0 0], [0 1 0], [0 0 1], [1̄ 0 0], [0 1̄ 0], [0 0 1̄]}

Planes: intercept with a, b, c axis, take reciprocal, to get Miller index planes:

Planes pass through

(
a

h
,
b

k
,
c

l

)
⇒ (h k l)

Set of symmetrically related planes is written as: {h k l}.

1.4 Reciprocal lattice/reciprocal space/k-space

Definition: reciprocal lattice is a mathematical construct used to describe the period-
icity of a crystal lattice by performing Fourier transform of the real lattice.

The diffraction pattern is the Fourier Transform of the lattice

FT(lattice) =
∞∑

h,k,l=−∞

Chkl e
i(Ghkl·r) =

∞∑
h,k,l=−∞

Chkl e
i(khx+kky+klz)
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where kh = 2πh/a, kk = 2πk/b and kl = 2πl/c.

Figure 1: Example: 2D reciprocal lattice

Reciprocal lattice vector are referred to as G-vectors. We use Ghkl.

Reciprocal lattice vectors:

Ghkl = hA+ kB+ lC

where

A = 2π
b× c

a · b× c
B = 2π

c× a

[a,b, c]
C = 2π

a× b

[a,b, c]

and the following are the behaviour of the reciprocal lattice vector:

A · a = 2π A · b = 0 A · c = 0...

Allows us to generalise to 2D as long as these behaviours are obeyed.

Each point in k-space corresponds to a set of planes in real space i.e. Ghkl is perpen-
dicular to planes (hkl), length is inversely proportional to plane spacing.

1.5 Diffraction

Assume elastic process so length must be the same.

phase difference: ∆ϕ = kf · r− ki · r = ks · r
where ks = kf − ki is the scattering wavevector and r is a lattice vector.

So, if ks is a reciprocal lattice vector, then the dot product is always an integer
number of 2π and we get strongly diffracted beam:

ks · r = (hA+ kB+ lC) · (ua+ vb+ wc) = 2π(uh+ vk + wl)
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Hence, condition for diffraction: scattering vector is a reciprocal lattice vector,

ks = kf − ki = Ghkl

1.5.1 Ewald sphere construction

Principle: conservation of energy

In reciprocal space, ki and kf must lie on the surface of a sphere, and be separated by
a G vector.

If there is noG vector that links ki to another point on the sphere, there is no diffraction
from the lattice. Allow us to understand if diffraction can occur, and where we might
see it.

1.6 Applications

1. Single crystal diffraction
- Diffracted beams form ’spots’, angles and strengths are recorded and analysed.

2. Powder diffraction (uses many small crystals in all possible orientations)
- Diffracted beams form ’rings’, used to identify phases or follow changes in a
known structure.

Diffraction can be used to measure crystal parameters such as size of unit cell.
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2 Lattice vibrations

In a solid, the motion of every atom is coupled with that of its neighbours, we use a
normal modes approach to describe the system.

2.1 Phonons and normal modes

1. In each normal mode, all the coordinates oscillates at the same frequency and
maintain fixed ratios to each other.
2. Overall motion is a sum of independent normal modes.

Description of phonon: a phonon is a collective harmonic excitation of the atoms with
a well-defined frequency, with a fixed relative phase and amplitude between all of the
atoms. They are normal modes of the systems.

2.2 Insight into phonons: 1D Harmonic Chain

Consider one dimensional chain of atoms, with identical mass, m, and connected by
springs with spring constant, α. Assume N atoms with cyclic boundary conditions.

There are N normal modes (one per degree of freedom).

Step 1: equation of motion for nth atom:

mün = α(un+1 − un)− α(un − un−1) = α(un+1 + un−1 − 2un)

Step 2: since all atoms are equivalent, symmetry ensues:
1. all atoms have same amplitude u0 and same frequency ω
2. constant phase shift, δ, between adjacent atoms

⇒ un+1 = u0e
i(δ−ωt) , un−1 = u0e

i(−δ−ωt)

Step 3: look for normal modes solution: assume un = u0e
−iωt and substitute into equa-

tion of motion.

We obtain:

ω(δ) =

√
4α

m

∣∣∣∣sin(δ2
)∣∣∣∣

where δ ∈ [−π, π].
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More generally, for the nth atom:

un = u0e
i(nδ−ωt)

writing δ = qa, where q is phonon wavevector. q is the phase shift per unit distance at
the lattice point.

un = u0e
i(qna−ωt) = u0e

i(qx−ωt)

where x = na is the distance along the chain. Basically, phonons are just waves trav-
elling along the chain.

Dispersion relation for the longitudinal waves that is allowed to run along the
monoatomic chain of atom:

ωL(q) =

√
4α

m

∣∣∣sin(qa
2

)∣∣∣
where −π

a
≤ q ≤ π

a
. Nearest neighbour interactions −→ sinusoidal dispersion.

Properties of phonon:

1. Energy stored in each mode:

E =

(
n+

1

2

)
ℏω

Ground state energy of 1
2
ℏω plus n phonons, each of energy ℏω

2. Momentum of phonon = ℏq

3. Velocity of phonon = dω
dq

(group velocity)

Dispersion curve

Figure 3: Blue dots are reciprocal lattice points!

q1 = q1 + nG

where G = 2π
a
. They are the same phonon. Also, qa gives the phase shift in the wave

between subsequent unit cells.
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1. Long wavelength limit (q → 0)

ω(q) ≈
√

4α

m

qa

2
= q

√
αa2

m
= q

√
αa

m/a

vp =
ω

q
=

√
αa

m/a
=

√
Y

ρ

Dispersion curve tend to continuum speed of sound. Meaning on large length
scales, the fact that matter are made of atoms/is lumpy does not matter.
Measuring phonon speed: measure elastic properties of the material e.g. bulk
modulus.

2. Short wavelength limit (q = π/a)
Largest unique-wavevector when q = π/a⇒ λ = 2a

ωmax =

√
4α

m

Since dω/dq = 0, we have a standing wave. No propagation of energy through
the system.

2.3 Real lattice

Sources of discrepancy/complexity:

1. Interaction beyond nearest neighbour. 1D model assumes interaction is
only between nearest neighbours.

2. Lattice anharmonicity, adding additional anharmonic terms. 1D model as-
sumes harmonic lattice, where the potential energy is a quadratic function of the
displacement from equilibrium.

3. Thermal vibrations, causing deviation from perfect alignment. 1D model
assumes perfect alignment of atoms in a linear chain.

Linear system means we can superpose solutions.

Example: nearest and next nearest neighbour

ω2 =
4

m

(
k1 sin

2
(qa
2

)
+ k2 sin

2(qa)
)

If k1
k2
> 2, it justifies the approximation of considering only the nearest and next nearest

neighbour, since the contribution from third neighbour onwards is insignificant.
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Derived in example sheet Qn 3.

First Brillouin Zone

−π
a
≤ q ≤ π

a
(2 atoms)

Phonon modes for chain of N atoms:

1. Number of modes = number of atoms in the chain

2. For chain of N atoms, q = 2π
Na

3. Each mode is a quantised SHO with E =
(
n+ 1

2

)
ℏω

4. Phonons have particle character (quasiparticle) - they are bosons. Does not obey
Pauli exclusion, each mode can have any number of phonons within it.
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2.4 Interactions - Crystal momentum

Momentum = ℏq

Consider a neutron scattering and generating a phonon, resulting in dynamics dis-
tortion to the lattice (creating compressions and rarefactions in the material), we end
up with a lattice that is distorted on some larger periodic distance (phonon wavelength).

Neutron can diffract from the distorted lattice according to:

kf = ki + q

Neutron can create a phonon and lose momentum (ℏq) and energy (ℏω) to the phonon.
Or neutron can absorb energy and gain momentum by annihilating a phonon (create
phonon with wavevector -q)

2.4.1 Combining two phonons

They interact because of the small amount of anharmonicity in the system.

If q lies outside the 1st Brillouin zone, a G vector could be subtracted to represent it
within the 1st BZ.

kf = ki + q+ nG

So, a neutron scattering from a phonon can leave with its momentum changed by
ℏq plus any amount ℏG.
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2.4.2 Measuring phonons

Measure phonon spectrum by inelastic neutron scattering.

Energy conservation: ℏω =
ℏ2

2m
(k2i − k2f )

Momentum conservation: ki = kf ± q±G (- annihilation, + creation)

Probe particle
send in−−−−→ interact −→ measure energy and momentum afterwards to infer

what the phonon must have been to cause these changes.
Process:

1. Send probe particle with comparable momentum and energy (∼ 40 meV). E.g.
neutrons for bulk phonons and He atoms for surface phonons. Sample illuminated
with monochromatic beam of particles with wavevector, ki

2. Particles interact with the lattice and exchanges energy and momentum, creating
or annihilating phonons

3. Select particles scattered into a particular outgoing direction, with wavevector kf

4. Energy analyse the scattered beam. Detected peaks correspond to single phonon
creation/annihilation at that particular kf

2.5 1D Diatomic Lattice

Know the derivation.

2.5.1 Equations of motion

mAü2n = α(u2n+1 + u2n−1 − 2u2n)

mBü2n+1 = α(u2n+2 + u2n − 2u2n+1)

Trial solutions:
u2n = U1e

i(2nqa−ωt)

u2n+1 = U2e
i((2n+1)qa−ωt)
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Substituting back in:

−mAω
2U1 = α(U2e

iqa + U2e
−iqa − 2U1)

−mBω
2U2 = α(U1e

iqa + U1e
−iqa − 2U2)

Put in matrix form, set det = 0 and solve for ω2:∣∣∣∣∣
(
2α−mAω

2 −2α cos qa
−2α cos qa 2α−mBω

2

) ∣∣∣∣∣ = 0

2.5.2 Dispersion relation

We get the dispersion relation:

ω2 =
α

mAmB

[
(mA +mB)±

√
(mA +mB)2 − 4mAmB sin2(qa)

]
Physical interpretation:
Two branches of solution: Negative root → acoustic mode. Positive root → optical
mode.

2.5.3 Dispersion plot

Figure 4: Unit cell is 2a in real space so in reciprocal space it is 1/2a

Acoustic mode (lower branch / lower energy mode)

• Neighbouring atoms in phase.

• Intersect origin: ω → 0 as q → 0.

11



• At zone boundaries (q = ± π
2a
), become standing wave where only the heavier

mass move:

ω =
2α

mA

• As q → 0, acoustic mode has angular frequency:

ω ≈ qa

√
2α

mA +mB︸ ︷︷ ︸
speed of sound

Speed of sound is given by v = dω
dq
.

Optical mode (upper branch / higher energy mode)

• Neighbouring atoms out of phase.

• Floating: ω → finite value as q → 0

• At zone boundaries, becomes standing wave where only the lighter mass moves:

ω =
2α

mB

• As q → 0, optical mode has angular frequency:

ω =

√
2α

µ
=

√
2α(mA +mB)

mAmB

• Called the optical mode as it interacts strongly with EM radiation. It has
strong optical absorption: photons annihilated and phonons created.
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2.5.4 Backfolding*

Example procedure for 2 types of atoms:

1. Start with monatomic chain of period a. 1st
BZ spans −π/a ≤ q ≤ π/a

2. Switch alternate atoms, assuming the masses
are the same for now, to form a diatomic
chain. Period becomes 2a. New 1st BZ is
halved: −π/2a ≤ q ≤ π/2a

3. Modes with q outside the new 1st BZ must be
backfolded into the zone, by adding
G = ±π/a, so forming two branches

[think of snake game boundary / shift in]

4. If the atoms have different mass, the two
modes split.
Can be extended to N modes, which requires
N foldings

2.6 3D phonons

Multiple modes:

• Longitudinal (L) modes, higher energy

• Transverse (T) modes, lower energy and often degenerate along high symmetry
directions.

Higher frequency −→ more energy −→ stronger bonds.
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3 Insulators

In insulating crystals, thermal energy is stored in the phonons.

3.1 Debye theory to model heat capacity

Assumption of dispersion relation:

ω = vsk

is true for all wavelengths; it essentially ignore the atomic nature of the material.

Key experimental observations that the model need to explain:

1. Near room temperature, C ≈ 3R per mole/3kB per atom (Dulong-Petit Law)

2. At low temperatures, C ∝ T 3

3.1.1 Derivation

Approach:

1. Find average energy in the ith mode
Consider energy stored in each phonon mode:

En = nℏω with probability Pn = e
− En

kBT

where n is the number of phonons in the mode and ω is the angular frequency of
the mode. The zero point energy 1/2ℏω is ignored.

The average energy in ith mode is:

Ei =

∑∞
n=0 nℏωie

−nℏωi
kBT∑∞

n=0 e
−nℏωi

kBT

Evaluating by spotting geometric series and − ∂
∂β
, we obtain:

Ei =
ℏωi

eℏωβ − 1
(Planck’s formula)

2. Internal energy is the sum of the contribution from all the modes:

U =

∫ ∞

0

ℏωi

e
ℏωi
kBT − 1

g(ω)dω

where g(ω) = dN
dω

is the density of states. g(ω)dω gives the number of states with
energies between ℏω and ℏ(ω + dω).
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3.1.2 Density of states for phonons (reflecting B.C.)

Consider rectangular box of side lengths A, B and C and use reflecting boundary
conditions to give standing waves in the box. Similar to solving particle-in-box,
wavevector is:

k =
[nxπ

A
,
nyπ

B
,
nzπ

C

]
These allowed states form a regular lattice of points in k-space, separated by π/A in a
x-direction, π/B in a y-direction and π/C in a z-direction.

Volume of each state: Vstate =
π3

ABC

Consider number of states, dN within shell of radius dk at radius k (in the positive
octant):

dN = g(k)dk =
3 · 4πk2

8
· dk

Vstate
The factor of 3 is to allow for 2 transverse modes and 1 longitudinal mode.

g(k) =
3V k2

2π2

where V = ABC is the volume of the box. The k2 dependence comes from considering
shells of states in k-space.
Also,

g(ω) = g(k)
dk

dω

If we know the phonon dispersion relationship g(k), we can obtain energy density g(ω).

Now, substituting in the assumed dispersion relation:

g(ω) =
3V ω2

2π2v3s

3.1.3 Debye frequency/Debye temperature

In order to integrate over the correct number of modes, we choose a Debye
frequency, ωD such that:

3N =

∫ ωD

0

g(ω)dω =

∫ ωD

0

3V ω2

2π2v3s
dω

⇒ ω2
D =

6π2v3sN

V

Internal energy integral:

U =

∫ ωD

0

g(ω) · ℏω

e
ℏω

kBT − 1
dω

where the mean speed of sound is given by 1
v3s

= 1
3

(
1
v3L

+ 2
v3T

)
.
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3.1.4 Heat capacity

C =
∂U

∂T
= ... = 9NkB

(
T

θD

)3 ∫ θD/T

0

x4ex

(ex − 1)2
dx

where the Debye temperature θD is ℏωD = kBθD.

High temperature limit (T ≫ θB) −→ Dulong-Petit Law.

ex

(ex − 1)2
≈ 1

x2
(Taylor expansion)

C = 3NkB

At high T, Ei = 2× 1
2
kBT . There are 3N possible phonon modes in a 3D crystal with

N atoms. U = 3NkBT and C = ∂U/∂T = 3NkB. It agrees!

Low temperature limit (T → 0) −→ Debye T 3.

Higher frequency modes are not excited (only long wavelength acoustic modes are ther-
mally excited), so contributions to the integral for large ω is not important, we can just
integrate to ∞.

Of the allowed volume in k-space, the fraction occupied by excited mode is on the order

of
(

kT
kD

)3

where ℏvkT = kBT . Thus, the fraction occupied is ∝
(

T
θD

)3

each having

energy kBT .

U ∼ 3N ·
(
T

θD

)3

· kBT = 3NkB
T 4

θ3D
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3.1.5 Density of states: Debye model v.s. Actual

Example: Aluminium.

1. At low ω, Debye agrees with measurement. At low q, phonon dispersion curve
tends to continuum speed of sound which agrees with the assumed dispersion
relation.

2. Near zone boundary, largest deviations occur, as assumption that ω ∝ q breaks
down.

3. Measured g(ω) is more complex as:
(i) the 3D 1st Brillouin zone has a more complicated shape.
(ii) Both transverse and longitudinal modes have different dispersion curves.

3.2 Thermal conductivity

Heat is carried by phonons in insulators. We can use kinetic theory to establish phonon
contribution to thermal conductivity.

Heat flux, H:

H =

∫ π

0

∫ ∞

0

[
nf(v)dv · 1

2
sin θdθ

]
︸ ︷︷ ︸

number of phonons with
speed between v and v + dv
travelling at angle θ to θ + dθ

· [v cos θ]︸ ︷︷ ︸
speed normal

to plane

·
[
−cph

dT

dz
l cos θ

]
︸ ︷︷ ︸

excess heat
per mode

1. Excess heat. Consider phonons crossing a plane at angle θ,

∆T =
dT

dz
∆z = −dT

dz
l cos θ

heat = cph∆T

where cph is the heat capacity of a phonon mode.

2. Distribution of phonons: nf(c) dc is the number of phonons with speed c to c+dc.
Fraction with angles θ to θ + dθ is 1

2
sin θ dθ

Integral over speed distribution:

⟨c⟩ =
∫ ∞

0

cf(c)dc

After evaluating the integral using substitution for the angular part, we obtain the
result for thermal conductivity by recognising the coefficient of dT

dz
is κ:

κ =
1

3
CV ⟨c⟩l

where CV is the heat capacity per unit volume and l is the phonon mean free path.
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3.2.1 Mean free path

Scattering processes reduce the mean free path and there are many different processes
that can contribute.

Add the rate from each process to obtain the total scattering rate,

Γ =
⟨c⟩
l

=
∑
i

⟨c⟩
li

Mean free path add reciprocally.

⇒ 1

l
=

1

l1
+

1

l2
+ ...

Types of scattering:

1. Geometric scattering

• Independent of T.

• From sample boundaries, impurities, gain boundaries.

2. Phonon-phonon scattering

• Depends on T.

• In an anharmonic (real) lattice, phonons can scatter because a phonon can
distort the lattice and another phonon can diffract off the grating produced.

Diffraction condition: q3 = q1 + q2

• 2 ways of phonon-phonon scattering:

(a) Normal scattering (N-processes)

– After phonons combine, resulting wavevector stays within 1st BZ
→ not much randomisation of phonon propagation → weak effect
on thermal conductivity.

(b) Umklapp scattering (U-processes)

– Resultant phonon wavevector goes outside 1st BZ → folding back
into 1st BZ gives negative group velocity → strong randomisation
of phonons → limit mean free path → strong reduction of κ.

– However, only dominant at high temperature to have enough high
energy/momentum phonons.
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3.2.2 Temperature dependence of κ for insulators

Low temperatures:

• Few phonons, so phonon scattering is insignificant. Geometric scattering domi-
nates.

• l not dependent on temperature as geometric scattering is independent of tem-
perature.

• C ∝ T 3 so κ ∝ T 3

High temperatures:

• Lots of phonons, so phonon-phonon scattering dominates. Umklapp processes
fully active. 1/2 U-processes + 1/2 N-processes.

• C is constant at 3NkB.

• Since number of phonons ∝ T , l ∝ 1
T
so κ ∝ 1

T

Intermediate temperature:

• Umklapp processes gradually turn off and effect of phonon scattering on mean
free path reduces greatly.

• κ rise above 1
T
asymptote as dependence of l on 1

T
weakens at lower temperatures.

Gradient deviates away from -1.

• At the same time, low temperature T 3 dependence starts dominating and the
gradient tends towards 3.

3.2.3 Validity of Debye model at different temperatures

Low T: dispersion is indeed linear so assumption holds
High T: Reproduce classical argument
Intermediate T: more complex dispersion relation that is not the same as assumption
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4 Free electron model

4.1 Principles and approximations:

1. Valence electrons are free to move through the lattice
2. Ignore electron-electron repulsion
3. Positive ions treated as continuous background
4. Ignore lattice periodicity

Key predictions FEM is able to make:
1. Electronic heat capacity. 2. Electron Fermi pressure. 3. Electronic conductivity

4.2 Density of states for electrons (cyclic B.C.)

g(ϵ) dϵ tells you the total number of states with energy between ϵ and ϵ+ dϵ.

Consider states in the box and use cyclic boundary conditions to give travelling
wave states:

Box volume = ABC

Wavevector =

[
±nx

2π

A
,±ny

2π

B
,±nz

2π

C

]
Volume of each state =

(2π)3

V

Volume of full shell of thickness dk at radius k = 4πk2dk

So,

dN = g(k)dk = 2 · 4πk
2dk

8π3/V

⇒ g(k) =
V k2

π2

where factor of 2 allows for spin-degeneracy of electron.

g(ϵ) = g(k)
dk

dϵ
and ϵ =

ℏ2k2

2m

Obtain:
g(ϵ) ∝ ϵ1/2

Can also do it for 1D or 2D case. Each state occupy area (2D) or length (1D) in k-space.
Consider either circle (annulus) or line (both sides), instead of shell.
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4.3 Fermi-Dirac Distribution

Fermi-Dirac distribution tells you the probability that the states with energy ϵ is
occupied at temperature T .

pF (ϵ) =
1

e(ϵ−µ)/kBT + 1

Note: distribution is symmetric about the chemical potential

At T = 0, there is no thermal excitation, so energy states are completely filled from
ground level until the Fermi energy (ϵF ). All higher states are unoccupied. (Step func-
tion)

As T increase, sharp step is progressively more smeared out by thermal excitation
(kBT ) around ϵF .

Chemical potential v.s. Fermi energy
At all T, chemical potential, µ, is the energy when pF = 0.5. At T = 0, µ is the Fermi
energy, ϵF .

We can prove/assume that µ varies weakly with temperature i.e. µ(T ) ≈ ϵF . At room
temperature the chemical potential for metals is virtually the same as the Fermi energy
– typically the difference is only of the order of 0.01. Not surprisingly, the chemical
potential for metals at room temperature is often taken to be the Fermi energy.
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Derivation - Fermi energy (counting the correct number of states)
At T = 0, in k-space, states are filled up to the Fermi energy and all lie inside a sphere
of radius kF , the Fermi wavevector.

N = 2 ·
4
3
πk3f
8π3

V

⇒ k3f = 3π2n

where n = N/V .

Then, use dispersion relation to find Fermi energy,

ϵF =
ℏ2k2f
2me

=
ℏ2

2me

(3π2n)
2/3

Derivation of Fermi-Dirac distribution

Start with First Law of Thermodynamics:

dU = TdS − pdV + µdN

dS =
dU

T
− µdN

T
(for constant V)

In ground state, entropy of reservoir is S0 = kB lnΩ0. To excite the system we need to
transfer 1 particle and ϵ of energy from reservoir to system. New reservoir entropy is:

S0 + dS = S0 −
ϵ

T
+
µ

T
= kB lnΩ

We have:

lnΩ0 =
S0

kB
and lnΩ =

S0

kB
− (ϵ− µ)

kBT

lnΩ− lnΩ0 = −(ϵ− µ)

kBT
⇒ Ω = Ω0e

−(ϵ−µ)/kBT

Normalise to obtain probability of state being occupied:

pF (ϵ) =
0 · 1 + 1 · e−(ϵ−µ)/kBT

1 + e−(ϵ−µ)/kBT
=

1

e(ϵ−µ)/kBT + 1

The number of occupied electron states is:

dN = pF (ϵ)× g(ϵ)dϵ

N =

∫ ∞

0

pF (ϵ)× g(ϵ)dϵ =

∫ ϵF

0

g(ϵ)dϵ
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4.4 Electronic Heat Capacity of Metals (successes of FEM)

1. Find total thermal energy Uel. 2. Differentiate it w.r.t. T.

Uel =

∫ ∞

0

ϵ · g(ϵ) · pF (ϵ) dϵ =
∫ ∞

0

ϵg(ϵ)

e(ϵ−µ)/kBT + 1
dϵ

Then,

Cel =
∂Uel

∂T
≈ π2

2
NkB

T

TF
∝ T

where TF is the Fermi temperature, given by TF = ϵF
kB
.

Easier way
Instead of evaluating the difficult integral, we can obtain similar result by assuming
only electrons within kBT of ϵF is thermally active and they can treated classically so
they each have 3

2
kBT of energy.

Uel = nex ·
3

2
kBT = g(ϵF )kBT · 3

2
kBT

Find g(ϵF ) by first noting,

g(ϵF ) ∝ ϵ
1/2
F

N =

∫ ϵF

0

1× Aϵ
1/2dϵ =

2

3
ϵF · g(ϵF )

So,

g(ϵF ) =
3N

2ϵF
=

3N

2kBT

Putting in expression of g(ϵF ) into Uel and differentiating with respect to T:

Cel ≈
9

2
NkB

T

TF
∝ T

Approximate expression and actual expression only differ by π2 v.s. 9.

T/TF is typically 0.01 for typical metals at room temperature.

4.4.1 Total heat capacity of metals

In metals electrons provide an additional contribution to the thermal conductivity,
which can therefore be much greater than in non–metals in which only phonons con-
tribute.

Both phonons and electrons contribute to heat capacity.

At low temperatures, Cph ∝ T 3 and Cel ∝ T ,

Ctot = γT + βT 3
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4.4.2 Fudge factor: effective mass m∗

A parameter to tune the heat capacity expression to match experimental values.

Cel ∝ NTm∗n−2/3

Discrepancy arise from electron-phonon coupling: ions pushed around by moving elec-
tron −→ other electrons avoid first electron, leading to extra contribution to KE −→
increase m∗.

4.5 Most important graph

4.6 Electron pressure (successes of FEM)

When the box is compressed −→ wavelength shortens −→ the KE of the states increase
−→ since the number of states occupied remains the same, the total energy increase
−→ there must be an outward pressure from the free electron gas.

P = −∂U
∂V

Find average energy ⟨U⟩ per electron by integrating over filled electron states:

⟨U⟩ =
∫ ϵF
0
ϵg(ϵ)dϵ∫ ϵF

0
g(ϵ)dϵ

=

∫ ϵF
0
ϵ3/2dϵ∫ ϵF

0
ϵ1/2dϵ

=
3

5
ϵF per electron

Noting that ϵF ∝
(
N
V

)2/3
, electron pressure for N electrons is:

P = −∂U
∂V

= − ∂U

∂ϵF

∂ϵF
∂V

=
2

5
nϵF

4.6.1 Property 1: bulk modulus

Pressure from electron gas has significant contribution to mechanical properties of met-
als. From the definition in Classical Dynamics:

∆P = −B∆V

V
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Isothermal bulk modulus: kB = −V
(
∂P

∂V

)
T

=
2

3
nEF

4.7 Motion of electrons (successes of FEM)

4.7.1 Ingredient 1: Scattering

Electron can collide with phonons and defects in mean time τ . We add rates to
obtain total rate:

1

τ
=

1

τphonon
+

1

τgeometric

After time t, the probability that an electron has not collided is e−t/τ . After collision,
the average velocity is zero.

⟨v⟩ = v · e−t/τ + 0 · (1− e−t/τ ) = v · e−t/τ

Fscattering =
d⟨v⟩
dt

= −⟨v⟩
τ

−→
goes into
equation
of motion

Scattering in k-space

E-field −→ displacement of Fermi sphere.
Scattering −→ limit displacement of Fermi sphere.

dk
dt

= −ℏ
e
E

Both phonon and defect scattering strongly change direction of k, but only slightly
change the magnitude, |k| (weak changes in energy).

Electrons can only scatter into unfilled states with similar energy (so cannot scatter
inwards into sphere). So, only electrons states near the Fermi surface can be
scattered.
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E-field to the left−→ sphere shift right.
+
Majority of electrons that are scattered are at the ’front’ of the Fermi sphere. They
scatter to the back.

Result: sphere reach equilibrium displacement in k-space, which corresponds to drift
velocity.

∆k =
m∗vdrift

ℏ

4.7.2 Ingredient 2: Influence of E and B fields

Total force on electron is Lorentz force + velocity dependent drag term due to scattering.

Equation of motion:

m∗
(
dv

dt
+

v

τ

)
= −e(E+ v×B) = −eE

First term: rate of loss of momentum due to collisions with the lattice.

Second term: assumed that in every collision an electron of expected momentum m∗v
loses all of its momentum, and this happens at a rate of one collision per τ .
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4.7.3 Property 2: electrical conductivity

For steady state, dv
dt

= 0,

1. Find drift velocity:

Drift velocity: m∗vdrift
τ

= −eE

So, vdrift =
eτ

m∗E = µE

where µ = vdrift
E

= eτ
m∗ is electron mobility.

2. Link to current density (using J = nvq = σE):

J = nevdrift = neµ︸︷︷︸
σ

E

∴ σ = neµ =
ne2τ

m∗

For the same material under the same conditions, the ratio of electrical conductivity is
just the ratio of number density.

4.7.4 Property 3: optical reflectivity

Optical reflectivity is related to inertia of free electrons when they are driven by the
high frequency electric field in light.

At optical frequency, ω ≫ 1/τ, so ignore scattering. Apply E field: E = E0e
−iωt giving

response x = x0e
−iωt,

m∗ω2x = eE

⇒ x0 =
eE0

m∗ω2

Dipole moment for one electron: p = −ex0 and P = ϵ0χE,

P = −nex0 = − ne2

m∗ω2
E0 = ϵ0

(
− ne2

ϵ0m∗ω2

)
E0

Dielectric: ϵ = χ+ 1 = 1− ne2

ϵ0m∗ω2
= 1−

ω2
p

ω2

where ω2
p = ne2

ϵ0m∗ is the plasma frequency. Things are coming back yeah. Then, refrac-
tive index is just:

n =
√
ϵ

Below the plasma frequency, n is imaginary, giving high reflectivity. At high frequency,
n is real and the metal is transparent.
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4.7.5 Property 4: electrical resistivity

High temperatures:

• Many phonons, phonon scattering dominant.

• Number of density of phonon is proportional to temperature.

• Hence, ρ ∝ n ∝ T

Low temperatures

• Few phonons, defect scattering dominant.

• Different sample have different defect density.

• Hence, there is T independent offset (Matthiessen’s rule).

4.7.6 Property 5: Thermal conductivity of metals

Contribution to thermal conductivity by phonons is small as ⟨c⟩el (speed of light) ≫
⟨c⟩ph (speed of sound). Use:

κ =
1

3
Cel⟨c⟩l

Since electrons only near the Fermi level are excited, ⟨c⟩ = vF and l = vF τ , we have:

κel =
1

3
·
(
π2

2
nkB

T

TF

)
· vF · vF τ

kel =
1

3
·
(
π2

2
nkB

T
1
2
m∗v2F/kB

)
· v2F τ

∴ kel =
π2nk2BTτ

3m∗

At room temperature, electron thermal conductivity swamps phonon conductivity.
At high temperatures, phonons dominate scattering. Since 1/τph ∝ n ∝ T , so thermal
conductivity is roughly constant with temperature.
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Pure metal (e.g. Cu) v.s. Alloy (e.g. stainless steel):

1. Cel ∝ T
2. ⟨c⟩ independent of T
3. Cu: pure copper atoms, large distance between impurity. Small contribution
from geometric scattering. Phonon scattering dominates:

l ≈ lph ∝ 1

T

So, κ nearly constant.

Stainless steel: 10% Nickel, short distances to nearest impurity. Geometric scat-
tering dominate.

l ≈ lg ∝ T 0

So, κ ∝ T .

4.7.7 Validity test 1: Wiedemann-Franz Law (support)

Experimental law: for metals at not too low temperatures, the ratio of the thermal to
electrical conductivities is directly proportional to temperature, with the same constant
of proportionality for all metals.

thermal conductivity

electrical conductivity
=
κ

σ
= LT where L =

π2

3

(
kB
e

)2

(Lorenz number)

Theoretical L = 2.45× 10−8WΩK−2

It has very good agreement with experimental values, giving strong support to the
validity of the free electron model.

4.7.8 Validity test 2: Hall effect (model breaking down)

If a steady current flows in a conductor under the influence of a magnetic field, then
there would be a transverse force acting on the charge carriers due to Lorentz force,
qv×B. This causes the electrons to be pushed sideways and they ’pile up’ on opposite
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faces creating an electric field EH . The electric force on electron by EH balances with
the magnetic force:

qE = qvB and I = nAvq

EH = vdriftB = B

(
J

nq

)
= RHBJ

where RH =
1

nq
=
EH

BJ
is the Hall coefficient.

We can deduce the number density of the charge carriers.

Look at ratio:
n

natom

= − 1

natomeRH

Found that values for Be and Cd is negative! Make no sense.

4.8 Comment on validity of free electron model

The free electron model works remarkably well given its simplicity - especially for alkali
metals (Li, Na, K, ...) and some noble metals (Cu, Ag, Au).

However, the Hall effect demonstrates that we need to go beyond free electrons. Inter-
action with the lattice will be included using the ‘nearly free electron model.

4.9 Q & A

Q1: Explain the hall effect, and show how, by measuring the Hall coefficient, one
can deduce the average number of free electrons per atom.

A1: When a steady current flows in a wire, subject to a steady magnetic field
perpendicular to the direction of current flow, the charges cannot have any net
force on them. Since there is a force of magnitude Bqv (where B is the magnetic
flux density, v the mean speed of the charge carriers, and q their charge), this
must be opposed by a static potential difference due to a concentration gradient of
charge carriers, perpendicular to both the current and the magnetic field.
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5 Nearly Free Electron Model

5.1 Result of accounting for lattice periodicity

Introducing periodicity results in back-folding of electron dispersion curve and a
finite potential splits the dispersion into separate bands!. Bands, bands, bands.

Basic approach:

1. Define the potential

• Periodic potential to represent a NFE with the lattice. Choose a weak
potential to simplify calculation. Expand as Fourier series in terms of
G-vectors.

2. Establish a generalised electron wavefunction

• Use Bloch’s theorem to find form of electron wavefunction and write
the basis states as Fourier series in terms of G-vectors.

3. Satisfy the Schrodinger Equation

• Solve using matrix

5.2 Step 1: Periodic Potential

Weak potential (nearly free): only a few electron basis states need to be included. A
free electron is describe by a single plane-wave.

All electron-electron interactions/correlations/exchange is ignored.

V (x) =
∞∑

p=−∞

Vp cos(pG1x) where G1 =
2π

a
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Figure 6: 1D potential

5.3 Step 2: Bloch’s Theorem

Bloch’s theorem states that the electron probability density must have the same trans-
lational symmetry as the lattice, |Ψ(x + a)|2 = |Ψ(x)|2. The wavefunction can only
change by a phase factor, δ = ka, between unit cell.

Ψk(r) = uk(r)e
ik·r

where uk has the periodicity of the potential and eik·r is a phase factor. Hence, we
can expand uk(r) (as it is periodic function) as a Fourier series:

uk(x) =
∞∑

n=−∞

Ck,n
1√
A
einG1x

We have:

Ψ(x) =
∞∑

n=−∞

Ck,n |ϕk,n⟩ where |ϕk,n⟩ =
1√
A
ei(k+nG1)x

Figure 7: 1D potential in k-space

Small red dots: basis states |ϕk,n⟩ lie on the free electron dispersion curve and are sep-
arated by G1 along the k-axis.

Large green dot: weighted linear combination of the basis states give the overall
wavefunction, ψk(x)

For small k values (lowest energy states),
There is significant difference in energy between neighbouring basis-states, so any ad-
ditional basis state other than the one next to it has little contribution to the overall
wavefunction, according to Boltzmann distribution. So,

Ψk(x) ∼ |ϕk,0⟩
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The energy is close to free particle energy.

For larger k,
Both basis-states have comparable energy, and give significant contribution to Ψk(x).

At zone boundary, k = G1/2, both basis-states contribute equally and travel in oppo-
site directions, superposing them forms standing waves in two ways (sum or difference):

Ψ+(x) =
1

2
[
∣∣ϕG1/2

〉
+
∣∣ϕ−G1/2

〉
] ∝ cos

(πx
a

)
Ψ−(x) =

1

2
[
∣∣ϕG1/2

〉
−
∣∣ϕ−G1/2

〉
] ∝ sin

(πx
a

)

Origin of splitting: the two new states, Ψ+ and Ψ− have different energies so the
degeneracy in the dispersion relationship is lifted; the two branches split apart in energy.

5.4 Step 3: Matrix

Starting with the Hamiltonian,

ĤΨ(x) = ϵΨ(x) where Ĥ = − ℏ2

2me

∂2

∂x2
+ V (x)

Ĥ
∑
m

Ck,m |ϕk,m⟩ = ϵ
∑
p

Ck,p |ϕk,p⟩

∑
m

Ck,m ⟨ϕk,n| Ĥ |ϕk,m⟩︸ ︷︷ ︸
Hnm

= ϵ
∑
m

Ck,p ⟨ϕk,n|ϕk,p⟩

Note: Can find Hnm by writing the operator in integral form and doing the integral.
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Hence, the equation reduces to an eigenvalue problem:∑
m

HnmCk,m = ϵCk,n ⇒ HC⃗ = ϵC⃗

(H − ϵI) C⃗ = 0

where Hnm are the matrix elements of H and C⃗ are the coefficients of the basis-states.

The eigenvectors of H gives the coefficients Ck,n

In the two state approximation, where Ψk(x) = Ck,0 |ϕk,0⟩+Ck,−1 |ϕk,−1⟩, only the ma-
trix elements H0,0, H1̄,0, H0,1̄, H1̄,1̄ are needed.

Now, [(
H1̄,1̄ H1̄,0

H0,1̄ H0,0

)
− ϵk

(
1 0
0 1

)]
︸ ︷︷ ︸

det = 0

(
Ck,−1

Ck,0

)
= 0

Diagonal terms of H:

H00 = Ek,0 =
ℏ2k2

2m
(free electron dispersion)

H1̄,1̄ = Ek,−1 =
ℏ2

2m
(k −G1)

2 ( free dispersion shifted by G1)

Off-diagonal terms: V1

2
.

Solving the characteristic determinant equation gives you energy eigenvalues, ϵk.

In general,

Ek,n of |ϕk,n⟩ =
ℏ2(k + nG)2

2m

They are quadratic curves offset by G.

(a) Basis states (b) Electron wavefunction
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With a more general potential:

V (x) =
∑
n

Vn cos(nG1x)

1. Energy gaps of Vn at k = nG1/2
2. Periodicity folds back k-space into the first BZ.

5.5 Band structure

Available electron states form a band structure.

• Bands: allowed electron states states lie in
certain energy ranges.

• Gap: between bands are gaps.

• Fermi energy determine how far up the
band structure fills with electrons. *States
are filled up to Fermi energy*.

• Uses: the filling level of the electron bands
determines whether a material is a conductor,
insulator or semiconductor.
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5.5.1 Filling bands (insulators v.s. conductors)

“An empty band conducts no charge” and “A filled band conducts no charge”.
Only partially filled bands contribute to electrical conduction as there are nearby
states available so the Fermi sphere can be displaced on application of an E-field.

∆k =
m∗vdrift

ℏ

How many electron states are there?
Separation of free-electron states in k-space = 2π

A
, where A = na is size of crystal.

Size of 1st Brillouin zone = 2π
a
.

Total number of states in the zone = A
a
.

So, there are n k-states or 2n electron states in the 1st BZ.

Where to find empty states?
Empty states exist near the top of a band.

Valance band: lower almost full band.
Conduction band: upper almost empty band.
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5.5.2 Band structure and process of conduction

When there is no electron field, all the electrons are in the ground state and there is
equal number of electrons moving forward and backward. There is no net current.

When an E-field is applied,

• E field causes electrons move to higher k-states (greater momentum), electrons
are pushed to the right.

• Phonons and defects scatter electrons into empty states of comparable energy.

• Scattered electrons thermalise (lose energy) by further phonon-interactions, until
they reach the occupied states.

• Result is a net current; more electrons are moving forwards than backwards.
The group velocity (gradient of dispersion curve)

5.6 Conduction by holes

We can represent the few empty states at the top of a band as a ‘holes’ moving in the
top of a full band.

Treat each empty state as containing a particle with:

• positive charge, +|e|

• positive mass, mh

• positive energy, ℏ2k2e
2mh

Hole band looks just like a free particle band.
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An empty state (net positive charge) travels in exactly the same way as a filled state
in the presence of an applied field.

Energy to create hole by transferring an electron into the conduction band:

∆ϵ = Egap +
ℏ2k2

2me

+
ℏ2k2

mh

The energy ϵe and momentum ke of electron in the valence band is measured with
respect to the top of the valence band.

Figure 9: Absorption of a photon of energy ℏω and negligible wavevector takes an
electron from E in the filled valence band to Q in the conduction band. If ke was
the wavevector of the electron at E, it becomes the wavevector of the electron at Q.
The total wavevector of the valence band after the absorption is −ke , and this is the
wavevector we must ascribe to the hole if we describe the valence band as occupied by
one hole. Thus kh = −ke; the wavevector of the hole is the same as the wavevector of
the electron which remains at G. For the entire system the total wavevector after the
absorption of the photon is ke + kh = 0, so that the total wavevector is unchanged by
the absorption of the photon and the creation of a free electron and free hole.
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Figure 10: he upper half of the figure shows the hole band that simulates the dynamics
of a hole, constructed by inversion of the valence band in the origin. The wavevector
and energy of the hole are equal, but opposite in sign, to the wavevector and energy of
the empty electron orbital in the valence band. We do not show the disposition of the
electron removed from the valence band at ke

Representing missing electron in a corresponding hole band.

ϵh = −ϵe

kh = −ke

5.6.1 Observation of holes

Both electrons and holes contributes to electrical conduction.

σe =
nee

2τe
m∗

e

and σh =
nhe

2τh
m∗

h

j = (σe + σh)E
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5.7 Bloch Oscillations

An extreme situation where occupied states move continuously through k-space,
which happens if the electric field is strong and the scattering processes are
weak.

Strong E-field + weak scattering −→ occupied states steadily increase in k −→ filled
states cross into 2nd BZ −→ direction of electron group velocity reverse −→ backfold-
ing means process is continuous −→ group velocity, and hence position of electrons,
oscillates.

Bloch oscillation is observed in both condensed matter and ultracold Cs atoms.
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5.8 Effective mass, m∗

Remember this!

m∗ =
ℏ2
d2ϵ
dk2

Memory aid: ϵ = ℏ2k2
2m

.

This shows that the curvature of the band structure explains the origin of the
effective mass.

Derivation:
By Newton’s Law:

f = m∗dv

dt︸ ︷︷ ︸ = d(ℏk)
dt

= ℏ
dk

dt︸ ︷︷ ︸
⇒ dv

dt
=

ℏ
m∗

dk

dt

Using dispersion relations to express speed v of electron:

dv

dt
=

d

dt

(
dω

dk

)
=
dk

dt

d

dk

(
dω

dk

)
=
dk

dt

d2ω

dk2
=

1

ℏ
d2ϵ

dk2
dk

dt

Equating:

m∗ =
ℏ2

d2ϵ/dk2

Effective mass depends on the second derivative of ϵ(k).

Consequences:
1. Electron behaves with different effective mass for particular band structure and
particular bands we are talking about
2. Different effective mass for different values of k
3. Depending on where the Fermi energy is, we might have more than 1 effective mass
contributing to conduction.

5.8.1 Observation of effective mass: Cyclotron resonance

Cyclotron resonance can be used to measure effective mass.
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Principle: in a B-field, charged particles perform circular orbits around the field lines
with the cyclotron frequency, ω = eB

m
.

Detection: At certain frequencies, we can observe resonances via strong absorption of
radio waves. From the frequencies, m∗

e or m∗
h can be determined.

Conditions: Need strong B field and very low temperatures.
To be able to measure resonance, charged particle must travel at least ∼ 1 rads, so
ωτ > 1 −→ ω must be very high (10s of GHz)

5.9 Divalent metals

• At T = 0, both electrons and holes exist.

• Carriers originate from Fermi contour crossing 1st BZ boundary.

There are half-filled states in both the 1st and 2nd band. Electrons in the 2nd BZ and
holes in the 1st BZ. They have different effective masses, due to differing band curvature.
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5.10 Tripos Q & A

Q1: (2011 P1 A5) Sketch the first Brillouin zone and the Fermi surface of a 2D
square lattice of (a) a monovalent and (b) a divalent metal.

A1: (a) Just fill to the Fermi level. So a circle.

(b) There is backfolding.

The double shaded parts are backfolded regions

Q2:
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6 Semiconductors

What is a semiconductor and what differentiates it from a metal?

Semiconductor:

• A semiconductor is a material where the electronic bandstructure of the ma-
terial has a gap in it.

• The electrons completely fill states below the gap, and the band above the
gap is completely empty, i.e. the Fermi level is in the gap.

• Semiconductors differ from insulators in that the bandgap is sufficiently small
that either thermal or optical excitation can promote electrons from the va-
lence band to the conduction band and therefore the material will conduct.

Metal:

• In a metal, there will either be some overlap of the bandstructure such that
electrons are always available for conduction in the conduction band or a not
completely filled band structure.

6.1 Doping

Explain the concept of doping in semiconductors, including the differ-
ence between p and n type.

• Doping in semiconductors allows for either electrons (n type) or holes (p type)
to be added to the material in states that lie close to either the conduction
or valance bands respectively.

• This is achieved by adding impurities to the sample which are either lacking
an electron compared to the number needed to bond into the surrounding
lattice (p type, valence 3 Al atoms), or which have an additional electron (n
type, valence 5 P atoms).

• This allows for much greater conductivity in the samples, and also a degree
of control over this.

1. Add in P+ ions:

• P+ has same electronic structure as Si. The system is no different than pure Si.

• VB full and CB empty.

2 Add in extra electron:

• The extra electrons all sit in the CB, but it can be in two states: ionised or
hydrogenic.

44



1. Ionised state - electron and ion are well separated

• More likely higher temperatures and contributes to conductivity.

2. Bound (hydrogenic) state - electron and ion form a ’hydrogen-like’ structure

• Electrostatic potential results in binding energy between the electron and
the ion so bound states are formed below the base of the conduction band.

• Low temperature state, and does not contribute to conductivity.

Figure 11: The state has no k-dependence so appear as a straight line

• Energy below the bottom of the conduction band and mean radius of orbit
are given by the H-atom formulae but using ϵr and m

∗.

∆E = −13.6× (m∗/me)

ϵ2r
eV and rorbit = 0.53× ϵr

(m∗/me)
Å

• For each defect state created, we take of the states out of the bottom of the
band it was created from.

6.1.1 n-type & p-type doping

n-type doping (donor states)
Using a dopant with an extra electron (e.g. P atoms)
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In n-type material, the majority carriers are electrons and they sit in the conduction
band. Otherwise, they could form hydrogenic states just below the conduction band.
Hydrogenic state has slightly lower energy because the electron feels the potential of
the positive ion.

p-type doping (acceptor states)
Using a dopant with a lack of an electron, extra one hole (e.g. Al atoms)

In p-type material, the majority carriers are holes and they sit in the valence band,
so the chemical potential leans towards the valence band. But overall, the conduction
and valence band have more energy than in n-type as trivalent impurities exert lower
forces (fewer protons) on the outer shell electron so electron orbits are slightly larger
and have greater energy.
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6.1.2 The picture so far...

Compare with kBT ∼ 25meV at room temperature, to see if there are significant
excitations possible.

6.1.3 Chemical potential of doped semiconductor

Fermi-Dirac distribution: p(ϵ) =
1

e(ϵ−µ)/kBT + 1
=

1

2
when ϵ = µ

To find where µ is, look for the half-occupation level of the states
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Key idea: chemical potential close to conduction band in n-type material and close
to valence band in p-type material.

Valence and conduction band in p-type material is higher than valence and con-
duction band in n-type material.

For n-type: at T > 0, can excite a small number of carriers from the valence band into
the conduction band (intrinsic) + excite a larger number of carriers from donor states
into conduction band (extrinsic) → shift distribution up → chemical potential drops
down slightly, shifting towards the middle of the gap.

For p-type: acceptor states are empty at first i.e. full of holes. At higher temperatures,
add in thermal excitations, generating majority and minority carriers. By the same
argument, chemical potential shift towards the middle.

6.2 p-n junction

At the p-n junction, carriers diffuse to balance µ and a depletion region is formed with
particular characteristics.

Bring p-type and n-type material into intimate contact.

Electrons are filled to higher energy levels in the n-type material, so they flow from
n-type (high concentration) into the p-type (low concentration) material. Similarly,
holes flow from the p-type to the n-type.

In the contact region, they cancel each other out, creating a depletion region where
there are no carriers. Electric field between opposite charges there. For electrons to go
through it, must have p.d. greater than barrier potential.

The diffusing carriers leave their associated ions behind. Resultant charge separation
produces an electric field at the junction that stops further carrier diffusion and establish
an electrostatic potential equal to the difference in µ.
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Figure 12: Very important diagram

Electrons want to go down from n-type conduction band to p-type valence band while
holes want to float up from p-type valence band to n-type conduction band.

6.2.1 Applying the bias

Forward bias: apply a field to force the majority carriers towards the junction by
reducing contact potential. Leads to good conduction.

Reverse bias: apply a field that forces majority carriers away from the junction,
increasing the width of depletion layer. Leads to poor conduction.

6.2.2 Generation and recombination currents

Forward bias: pushes the majority carrier towards the junction, creating a steady re-
combination current as they recombine with majority carriers coming the other way
to maintain the equilibrium number densities (F.D. distribution). Conducts well.

Reverse bias: pushing majority carriers away from junction and minority carriers to-
wards the junction, creating a small generation current → the diffusion of majority
carriers away from the junction widens the depletion region as well. Do not conduct
well.

49



Quantifying how the applied bias alters number of charge carriers

p0(ϵ) =
1

e(ϵ−µ)/kBT + 1
≈ e−(ϵ−µ)/kBT

If µ increases to µ+ eV when we add a bias:

pV (ϵ) ≈ e−(ϵ−µ−eV )/kBT

= e−(ϵ−µ)/kBT eeV/kBT

= p0(ϵ) e
eV/kBT

I-V characteristic graph

For no bias, recombination current = generation current.

Bias does not change generation current, Ie,0.

The number of electrons in the n-type region that can cross the junction varies with
eeV/kBT

So, overall current through diode:

I = I0

(
e

eV
kBT − 1

)

Diode act as a one-way conductor, with low resistance in forward bias and high resis-
tance in reverse bias.
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6.3 Diodes

6.3.1 p-n junction diode

Uses: one way conductor.

Operational principle: With forward bias, majority carriers pushed towards junction
- good conduction. With reverse bias, minority carriers pushed towards junction - poor
conduction.

I-V characteristic:
Ie = Ie,0(e

eV/kBT − 1)

Applications: in electronics such as AC-to-DC rectification / protection from large
voltage generated.

Pushing diodes to their breakdown limit. With sufficient reverse bias, p-n junction
can break down and conduct in the reverse direction.

6.3.2 Zener diode

Uses: voltage reference in electronic circuits.

Operational principle: Zener breakdown caused by tunneling.

• Tunneling of electrons at the top of p-type valence band through energy barrier
to unoccupied states at the bottom of the n-type conduction band.

• Sufficiently large bias causes the energy at the top of the valence band in the
p-type material to overlap the bottom of the conduction band in the n-type.
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• Can be deliberately engineered to happen at a particular bias by using heavily
doped materials.

• Heavy doping puts µ near the band edge and reduces the voltage needed for
breakdown (so Zener breakdown occurs before other breakdown).

6.3.3 Avalanche diode

Uses: voltage references, protection devices, single photon detectors.

Operational principle: Avalanche breakdown caused by successive generation of
carriers.

• Thermally excited carriers within junction gain energy between collisions.

• These create further electron-hole pairs, which gain energy and so form even more
carriers.

• Large reverse current can flow and can dissipate a lot of heat; potential to damage
the device.

6.3.4 Light emitting diode

Uses: communications, efficient lighting.

Operational principle: recombine electron-hole pair and liberate photons.
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• When a forward bias is applied, majority carriers flow into the junction and the
electron-hole can recombine, releasing energy.

• Use ‘direct band gap’ material, so the emission of energy as photons/light is the
most favorable process.

• The size of the band-gap determines the wavelength of the photons emitted.

Band Gap Requirements: direct band-gap material e.g. gallium arsenide (GaAs).
The bands are located above each other in k space, allowing a photonic transition be-
tween the two states as photons have very little momentum.

Indirect bandgap material (e.g. silicon): states are displaced in k-space and so addition
of momentum from a phonon is required to effect a transition from one band to the
other. Light emission much less likely and a lot of energy dissipated as heat.

6.4 Semiconductor laser

Uses: telecommunications

Operational principle: maintain population inversion by driving carriers directly
from the n-type material to higher relative states in the p-type material.

• Normal population of energy levels at equilibrium is given by Boltzmann distri-
bution, where higher energy states less populated than lower states.
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• In population reversion, higher energy states more populated than lower states.
This is not at equilibrium so needs to be continuously pumped by using a very
large forward current to have carrier injection.

• Need photon that matches energy levels. Photon stimulates electron transitions,
leading to further photon emission: Light Amplification by Stimulated Emission
of Radiation.

• The junction is surrounded by an optical cavity (partially reflecting surfaces) to
reflect photons backwards and forwards through the gain region. Some photons
are transmitted at the interface, to form the laser beam.

Working Requirements:

1. Very heavy doping to place µ in the conduction band (n-type) / valence bands
(p-type).

2. Use strong forward bias.

3. Carrier injection: carriers can be injected from n-type conduction band to p-type
conduction band to maintain the population inversion.
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6.5 Solar cells

The reverse of LEDs or semiconductor laser. Photons are absorbed and generate elec-
tron hole pairs in the junction, which can drive an external current.

Uses: renewable energy (20-30% efficiency)

Operational principle: photocurrent.

• Send photon in and create an electron-hole pair at the junction.

• An electric field is applied at the junction so they are swept out of the junction,
creating a photo-current, IL.

• Photocurrent acts to forward bias the junction, so some of the current leaks back
again.

• Equivalent circuit: looks like a current source in parallel with diode and a shunt
resistor (resistive leakage). The greater the output voltage (across the diode), the
greater the leakage.

Equivalent circuit of solar cell
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Optimised design:

∼ End of Notes ∼
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