
Oscillations, Waves and Optics Summary Notes

By Shikang Ni

1 Oscillations

Simple harmonic oscillator:

F (t) = mẍ+ bẋ+ kx⇒ F

m
= ẍ+ γẋ+ ω2

0x

where

γ =
b

m
and ω2

0 =
k

m

1.1 Homogeneous equation (free oscillation)

Trial solution: x = ept,

p =
−γ ±

√
γ2 − 4ω2

0

2
= −γ

2

(
1±

√
1− 4Q2

)
where Q is the quality factor.

Damping regimes:
Light damping: γ < 2ω0 or Q > 0.5
Critical damping: γ = 2ω0 or Q = 0.5
Heavy damping: γ > 2ω0 or Q < 0.5

1.1.1 Light damping (γ < 2ω0 or Q > 0.5)

Description: There will be oscillations, enveloped by a decaying exponential of the form
e−γt/2.

x(t) = e−
γt/2(A sinωf t+B cosωf t) = e−

γt/2D cos(ωf t+ ϕ)

Free oscillation frequency: ωf =
1

4

√
4ω2

0 − γ2

Q Factor

Q =
ω0

γ
=

ω0

∆ω

Q is the number of radians of phase elapsed (ω0t) for amplitude to fall to e−0.5 of original
value / intensity or energy to fall by e−1.
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A(t) = A0 e
−γt/2 and I(t) = I0 e

−γt

Amplitude decays with time constant τ = 2/γ and intensity decays with τ = 1/γ.

1.1.2 Critical damping (γ = 2ω0 or Q = 0.5)

Description: there is no oscillations, and it has the fastest return to equilibrium.

x(t) = (C1 + C2ω0t)e
−ω0t

Most rapid approach to equilibrium with no overshooting. Time constant τ = 1
ω0
.

Example, analog speedometers.

1.1.3 Heavy damping (γ > 2ω0 or Q < 0.5)

Description: exponential decay to equilibrium with no oscillations, but slower than
critical damping.

x(t) = C1e
µ−t + C2e

µ+t

µ± = −1

2

(
γ ±

√
γ2 − 4ω2

0

)

Check for overshooting by x(t) ≤ 0.

1.2 Driven harmonic oscillator

Trial solution: x = x0e
iωt where x0 = Aeiϕ and F = ℜ[F0e

iωt]

Amplitude response function:

R(ω) =
x0
F0

=
1

m[(ω0 − ω)2 + iγω]
or

1

−ω2m+ iωb+ k

=
(ω2

0 − ω2)− iγω

m[(ω2
0 − ω2)2 + γ2ω2]

Amplitude response:

|R| = 1

m
√
(ω2

0 − ω2)2 + γ2ω2

arg(R) = tan−1

[
−γω

ω2
0 − ω2

]
To find amplitude resonance frequency, solve for ω in d|R|

dω
= 0 to obtain:

ωa = ω0

√
1− γ2

2ω2
0

= ω0

√
1− 1

2Q2
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Velocity response
v0 = iωx0 = iωF0R(ω)

So,

|v0| =
|F0|

m
√

(ω0 − ω)2/ω2 + γ2

arg

(
v0
F0

)
= tan−1

(
ω2
0 − ω2

γω

)

Acceleration response
a0 = −ω2x0 = −ω2F0R(ω)

a0 = − F0

m[(ω0 − ω2)/ω2 + iγ/ω]
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1.3 Problem-solving tips

1. (2017 Tripos P2 B6) What happens to the motion of a body when a mass M is
suddenly added to the system?

There will be a new equilibrium position of l = −Mg
k

below the original equilibrium
position.
This change can be accounted for simply by updating the initial conditions.

x̃(t = 0) = +
Mg

k
and ˙̃x(0) = 0

Then proceed as usual to solve the equation of motion using substitution x̃ = Aeλt.

2. Critical damping is always preferred in practice.

3.
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2 Waves

2.1 Transverse Waves

Transverse wave equation (non-dispersive):

∂2ψ

∂t2
= v2∇2ψ

where v =
√

T
µ
where T is tension force term and µ is the mass term.

Key properties: any waveform, non-dispersive, linear (principle of superposition)

Derivation of transverse wave equation

Assume uniform tension and gradient of string ≪ 1. Find expression for 1) net tension
force and use 2) Newton’s second law.

Propagation of general disturbance

Waves of all frequencies travel at the same speed v, so does a disturbance (definition of
non-dispersive - velocity does not depend on frequency).

Ψ(x, t) = Ψ(x± vt, 0) = f(x± vt)

Waves in various coordinate system

Spherical waves:

Wave equation: v2
1

r2
∂

∂r

(
r2
∂Ψ

∂r

)
=
∂2Ψ

∂t2

Guess:

Ψ(x, t) =
f(r ± vt)

r
Cylindrical waves:

Wave equation: v2
1

r

∂

∂r

(
r
∂Ψ

∂r

)
=
∂2Ψ

∂t2

Guess:

Ψ(x, t) ≈ f(r ± vt)√
r

if r ≫ λ
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2.1.1 Polarisation

Relative phase, ϕ, is the most important parameter in polarisation.

Same amplitude + same phase ⇒ linear polarisation.
Same amplitude + π

2
out of phase ⇒ circular polarisation.

Arbitrary amplitude and phase ⇒ elliptical polarisation.

Linear polarisation
Resolve the displacement into two perpendicular components in a plane perpendicular
to the direction of propagation.

Figure 1: Linear polarisation

(
Ψy

Ψz

)
=

(
A cos θ

A sin θ · einπ
)

= A

(
cos θ
± sin θ

)
Also, linear polarisation = sum of coherent left- and right-handed circularly polarised
waves.

Circular polarisation
Convention for polarisation direction: look at wave coming towards you, clockwise
motion of electric field vector is right-circular polarisation, vice versa.(

Ψy

Ψz

)
=

(
A

Aei(2n+1)π/2

)
=

(
A

±iA

)
+ for right-circular / - for left-circular.

Also, circular polarisation = sum of orthogonal linear polarisation with π/2 relative
phase.

Elliptical polarisation
Ψy = Ay cos(ωt− kx)

Ψz = Az cos(ωt− kx+ ϕ)

⇒ Ψz = Az

(
Ψy

Ay
cosϕ−

√
1−

Ψ2
y

A2
y

sinϕ

)
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Figure 2: Linear polarisation

Can rearrange into ellipse equation.(
Ψy

Ψz

)
=

(
A

±iB

)
2.1.2 Wave impedance

Z =
driving force

velocity response
=
F

v

Example, free end of string:

Z =
−T sin θ

ψ̇
=

−T ∂ψ
∂x

∂ψ
∂t

=
(−T ) df

du

(−v) df
du

=
T

v

Using ψ = f(u) = f(x− vt) for moving in +x direction. Hence,

Z =
T

v
=
√
Tρ = ρv

2.1.3 Power in wave

Power = force× velocity = Fv

Mean power: ⟨P ⟩ = 1

2
ℜ[Fv∗] =

1

2
ℜ[Z]|v|2

Then, using v = ψ̇ = iωψ,

⟨P ⟩ = 1

2
Zω2A2

0 = (KE + PE)× v

KE =
1

2
ρ

(
∂ψ

∂t

)2

=
1

2
ρω2A2

0 and PE =
1

2
T

(
∂ψ

∂x

)2

=
1

2
Tk2A2

0

Note that ρω2 = Tk2. After averaging over a complete wavelength, average energy per
unit length is 1

2
ρω2A2

0.. Multiplying by v gives the mean power flow, which is the same
expression as above.
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2.1.4 Boundary questions

1. Problem set up:

2. Impose boundary conditions:

• Continuity of ‘displacement’, ψ.

• Continuity of ‘force’, −T ∂ψ
∂x

or Z ∂ψ
∂t
.

For sound,

• Continuity of acoustic excess pressure, ψp

• Continuity of particle velocity, ȧ

3. Solve:

Amplitude reflection coefficient:

r =
Z1 − Z2

Z1 + Z2

Amplitude transmission coefficient:

t =
2Z1

Z1 + Z2

For pressure, voltage and E-field. Replace Z1 with 1
Z1

and Z2 with 1
Z2
.

Force reflection coefficient:

rf =
Z2 − Z1

Z1 + Z2

Force transmission coefficient:

tf =
2Z2

Z1 + Z2

Also the power transmission coefficients are:

R = rr∗ and T = tt∗ = 1−R and R + T = 1
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2.2 Longitudinal Waves

A series of rarefactions and compressions, no polarisation possible, maximum pressure
at minimum displacement.

In gas,

Wave equation:
∂2a

∂x2
=

ρ

γp

∂2a

∂t2

*Speed of wave: v =

√
γp

ρ

Acoustic impedance: L = vρ =
√
γpρ

where γp can be generalised to some sort of modulus: elastic modulus (K), bulk
modulus (B), Young’s modulus (Y).

2.2.1 Derivation

Ingredient 1: reaction of gas to compression/rarefaction

An adiabatic process (Q = 0) as compression/rarefaction is so fast that heat cannot
flow in and out of the gas before the next phase of pressure wave passes through.

pV γ = constant

dpV γ + pγV γ−1dV = 0

⇒ dp = ψp = −γp∆V
V

where γ = CV +R
CV

.

Ingredient 2: strain in volume
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∆V

V
=

∆S∆a

∆S∆x
=
∂a

∂x

where ∆a = ∂a
∂x

·∆x.

Ingredient 1 + ingredient 2:

ψp = −γp∂a
∂x

∂ψp
∂x

= −γp∂
2a

∂x2
− γ

∂p

∂x

∂a

∂x︸ ︷︷ ︸
negligible
since a≪λ

Ingredient 3: stress

Fnet = −∂ψp
∂x

∆x ·∆S

m

∆x∆S

∂2a

∂t2
= −∂ψp

∂x
⇒ ρ

∂2a

∂t2
= −∂ψp

∂x

Combining the last two equations:

ρ
∂2a

∂t2
= γp

∂2a

∂x2

∴
∂2a

∂t2
=
γp

ρ

∂2a

∂x2

2.2.2 Impedance matching

Make reflection zero by using an intermediate medium with the following properties:

1. d = λ
4

2. Z2 =
√
Z1Z3

Q1: Why does spectacle lens appear purple

A1: The lenses are coated with a medium whose refractive index is the geometric
mean of those of the lens itself and air. If this layer is a quarter of a wavelength
thick perfect transmission ensues. We choose green as the middle of the visible
spectrum, and so this does not quite work for blue and red. Thus the reflected
light seems purple.
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2.3 Dispersion

Dispersion relation is written in the form ω as a function of k:

ω(k) = f(k)

For example, ω = vphk.

2.3.1 Dispersion curve

2.4 Damped system

∂2ψ

∂t2
+ Γ

∂ψ

∂t︸︷︷︸
damping

= v2
∂2ψ

∂x2

ω2 − iωΓ = v2k2

⇒ k2 =
ω2

v2
− i

ωΓ

v2

For light damping (Γ ≪ ω):

k ≈ Γ

2v

For heavy damping (Γ ≫ ω):

k ≈
√

Γω

2v2

2.4.1 Wave impedance

Z =
−TΨ′

Ψ̇
=
Tk

ω
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2.5 Water waves

Water moves in both longitudinal and transverse directions, with these oscillations in
quadrature, forming ellipses.

Dispersion relation in deep water:

ω2 = gk︸︷︷︸
gravity

+
σk3

ρ︸︷︷︸
surface
tension

1. Ripple/capillary wave - surface tension driven,

vg ≈
3

2
vϕ and vϕ =

√
σk

ρ

Phase speed and group speed decreases as wavelength increases. Anomalous dispersion.
Individual waves appear to move backwards through the wavepacket.

2. Gravity waves - gravitational force driven,

vg =
1

2
vϕ

Phase speed and group speed increase as wavelength increases. Normal dispersion. In-
dividual waves appear to move forwards through the wavepacket.

3. Shallow water gravity waves:

If wavelength λ exceeds water depth h, the wave motion is mainly longitudinal.

Example: Tsunami wave
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2.6 Group and phase velocity

Phase velocity: the velocity that a pure frequency harmonic wave propagates.

Group velocity: velocity at which an interference feature of a wavepacket propagates.

Derivation 1
Consider two equal-amplitude waves propagating together with close frequencies
(k1 ≈ k2). We get beating.

Ψ = cos(ω1t− k1x) + cos(ω2t− k2x)

= 2 cos(ω+t− k+x)︸ ︷︷ ︸
carrier

cos(ω−t− k−x)︸ ︷︷ ︸
envelope

where ω+ = 1
2
(ω1 + ω2) and ω− = 1

2
(ω1 − ω2). Likewise for k+ and k−.

It is made up of a high frequency wave travelling at speed which we call the phase
velocity:

vph =
ω

k

This is modulated by a low frequency travelling envelope with speed we call the
group velocity:

vgrp =
ω2 − ω1

k2 − k1
=
dω

dk

Derivation 2
We can think of group velocity as the speed at which a ”bump” in the wave travels.

A wave can be represented as a sum of many Fourier components (pure harmonic
waves of different frequencies), with each having a phase of (ωt− kx). The bump
arise when the constituent waves add up in phase at a point. This happens when:

d

dω
(ωt− kx)|ω0 = 0

where ω0 is the angular frequency of the typical wave in the group.

t− x

(
dk

dω

)
ω0

= 0

x

t
= vgrp =

dω

dk
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Derivation 3
Expanding the dispersion relation:

ω(k) = ω0 +
∂ω

∂k

∣∣∣
k0
k1 + ...

The first order is the group velocity:

vgrp =
∂ω

∂k

∣∣∣
k0

For non-dispersive wave, the phase and group velocity is the same, so the envelope will
propagate at the same speed as the carrier wave. For dispersive wave, wave crests will
move relative to the envelope.

Relationship between spatial extent of group and range of wavevectors in a group:

∆k∆x ≈ 1

Estimating rate of spreading of wave packet If a group contain wavevectors in a
band of size 2∆k about k0, there is a range of group velocities in the group between:

vg1 =
∂ω

∂k

∣∣∣
k0+∆k

and vg2 =
∂ω

∂k

∣∣∣
k0−∆k

Expanding group velocity about k0 to first order:

vg1 ≈ vg|k0 +
∂2ω

∂k2

∣∣∣
k0︸ ︷︷ ︸

β

∆k and vg2 ≈ vg − β∆k

The length of the wavepacket after time t is:

∆x ≈ ∆x0 + (vg1 − vg2)t ≈ ∆x0 + (2|β|∆k)t

∴ ∆x ≈ ∆x0 +
2|β|
∆x0

t

The second order term in the dispersion relation tells you about the broad-
ening of the wave packet!

Just like how the first order term tell you about the group velocity.

Physical intuition to dispersive shape change: as longer wavelengths are faster,
the waves will ’pile up’ at the front of the wave packet, while the shorter wavelengths
will be gathered at the back.
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2.7 Guided Waves

Benefits:

• Allow us to send a single mode of oscillation at a given frequency ω0 with sen-
sible choice of the size parameters of the waveguide which determines the cutoff
frequency.

• We do not get the 1/r2 decay of the transmitted wave so this allows weak signals
to be sent over long distances. It also shield a signal from outside disturbances.

Applications: optical fibres, stethoscopes.

Set-up:

Consider two travelling waves with wavevector k, moving at angle ±θ to x:

ΨA = Aei(ωt−kxx−kyy)

ΨB = −Aei(ωt−kxx+kyy)

Ψ = ΨA +ΨB = Aei(ωt−kxx)
[
e−ikyy − e−ikyy

]
= −2iA sin(kyy)e

i(ωt−kxx)

This is a wave travelling in the x-direction of wavelength 2π
kx
, with amplitude modulated

by a standing wave in the y-direction.

Boundary conditions in the y-direction gives discrete values for ky:

ky =
nπ

b

Dispersion relation

ω2 = v2
(
k2x +

n2π2

b2

)
Allowing us to find phase velocity and group velocity:

vp =
ω

kx
and vg =

dω

dkx

But noting the relationship between phase and group velocity allows us to find group
velocity quickly:

vpvg = v2
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3 Diffraction

3.1 Fresnel-Kirchhoff Diffraction Integral

Ψp =

∫ ∫
− i

λ︸︷︷︸
1

h(x, y)︸ ︷︷ ︸
2

K(θs, θp)︸ ︷︷ ︸
3

ase
iks

s
· e

ikr

r︸ ︷︷ ︸
4

dxdy

1. Amplitude of wavelet relative to incoming wave

2. *Aperture function. h(x, y) = 0 or 1 depending on whether (x, y) is obstructed
or open.

3. *Obliquity/inclination factor (Huygens-Fresnel theory): describes the fall-off
in intensity of the wavelets with angle θ away from the forward direction.

K(θs, θp) =
coss+cosp

2
≈ 1

4. *Phase factors:

point S to (x, y):
ase

iks

s

*point (x, y) to P:
eikr

r

Huygens’ principles: each point on a wavefront acts as a source of secondary wavelets
which propagate, overlap, interfere, and thus carry the wavefront forward.

3.2 Resolution

3.2.1 Rayleigh criterion

Statement: images can be just resolved if the maximum for one pattern coincides with
the minimum of the other pattern.

In other words, the separation of their peaks is equal to the full-width at half maximum.
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Chromatic resolving power of grating is given by:

λ

∆λ
= mN =

mW

d

where m is the order and N is the number of slits, N = width
slit spacing

= W
d
.

Using wider gratings give narrower diffraction beams and observing at higher order
increases angular separation of the patterns. Both makes it easier to revolve close
wavelengths.

Intuitive approach:

1. Find location of peak, θ. E.g. θ = sin−1 λ
d

2. Find location of next zero, θ + δθ. E.g. θ + δθ = sin−1[λ+∆λ
d

+ λ
w
] where d is slit

spacing and w is width of grating.

3.2.2 Airy disk

Fraunhofer diffraction through circular aperture would produce Airy disk (the first zero
of the Bessel function of the first kind).

angular resolution = 1.22
λ

D

spatial resolution = 1.22
λ

D
f
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3.3 Near field v.s. Far field diffraction

3.3.1 Derivation

The amplitude of wave at a point P (x0, y0) on the diffraction plane is obtained by
integrating over the aperture plane:

ψp =

∫ ∫
Ah(x, y)

eikr

r
dxdy

r2 = L2 + (x− x0)
2 + (y − y0)

2

= (L2 + x20 + y20)− 2(x0x+ y0y) + x2 + y2

= R2

(
1− 2(x0x+ y0y)

R2
+
x2 + y2

R2

)
r = R

(
1− 2(x0x+ y0y)

R2
+
x2 + y2

R2

)1/2

⇒ r ≈ R−x0x+ y0y

R︸ ︷︷ ︸
Fraunhofer

+
x2 + y2

2R︸ ︷︷ ︸
Fresnel

where R is the optical path length from the aperture plane to point P on the diffraction
plane.

Rayleigh distance (between aperture and screen):

dR =
a2

λ

where a is the maximum dimension of the aperture.

If distance ≫ dR, Fraunhofer regime (far-field). Discard quadratic term.
If distance ≪ dR, Fresnel regime (near-field). Preserve quadratic term but set it on-axis
x0 = y0 = 0.

3.4 Fraunhofer Diffraction

Diffraction pattern = FT [aperture function]

ψ(p, q) ∝
∫ ∫

h(x, y)e−i(px+qy)dxdy

where p = k sin θ and q = k sinϕ.

Condition for validity: when the phase variation across the aperture is linear in dis-
tance moved across the aperture when viewed from any point on the aperture screen of
interest.
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3.4.1 Babinet’s principle

Babinet’s principle states that: the intensity pattern due to aperture h is identical to
that of its complementary aperture h′ = 1− h(x, y), except at the origin.

Proof :

ψ′ = A

∫ ∫
h′(x, y)e−i(px+qy)dxdy

= A

∫ ∫
(1− h)e−i(px+qy)dxdy

= A

∫ ∫
e−i(px+qy)dxdy − ψ

= 4π2Aδ(p)δ(q)︸ ︷︷ ︸
vanishes off-axis

−ψ

I ′ = |ψ′|2 = | − ψ|2 = |ψ|2 = I

So, h and h′ produces the same intensity pattern.

3.5 Key ideas

Convolution theorem to deconstruct an arbitrary aperture function to find the in-
tensity pattern.

Position of maximums/peaks for narrow slits: q = n× 2π

d
or sin θ =

nλ

d
where d is

the slit spacing.

Position of first zero for top-hat function: q =
2π

a
or sin θ =

λ

a
where a is the width

of the single slit.

Important Fourier transform parameter: q = k sin θ where θ tells you the angle of
diffraction.
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3.6 Spectral line emission

1. Natural line width
Uncertainty principle tells us there is a small uncertainty in energy and hence the
spectral line emitted has finite width. Fourier transform of the spectral line yields a
Lorentzian power spectrum.

2. Collision broadening
Collisions between atoms while they are emitting limits the coherence of emitted light
waves, giving a width of:

∆ω ∼ nσu

where n is number density, σ is collision cross-section and u is particle speed.

3. Thermal broadening
When atoms in motion emit light, there will be Doppler shift, obtaining a Gaussian
line with width:

σω = ω0

√
kBT

mc2

Lorentzian v.s. Gaussian

1. Lorentzian fall off slower.
2. In general, a profile is the convolution of Gaussian and Lorentzian.
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3.7 Fresnel Diffraction

ψp ∝
∫ ∫

h(x, y) e
ik

(
x2+y2

2R

)
dxdy =

∫ x2

x1

e
ikx2

2R dx

∫ y2

y1

e
iky2

2R dy

=

∫ u2

u1

e
iπu2

2 du︸ ︷︷ ︸
C + iS → Cornu spiral

∫ v2

v1

e
iπv2

2 dv

where

u = x

√
2

λR
and v = y

√
2

λR

R =

(
1

a
+

1

b

)−1

where a is source-aperture distance and b is aperture-screen distance.

3.7.1 Cornu spiral

3.7.2 Circular aperture

For circular aperture of radius a, letting s = x2 + y2 = r2 so 2r dr = ds,

ψp ∝
∫ a

0

Ke
iπs
λR 2πrdr ∝

∫ a2

0

Ke
iπs
λR ds

Phasor diagram:

21



• The integral can be thought of as the addition of lots of infinitesimal length of
complex numbers (ds) with phase ϕ = πs

λR
. As ds is very small, the sequence of

phasors can be approximated as an arc of a circle.

• OF is the amplitude of undistorted wavefront. In the absence of obstruction, the
integration range is from O to F.

• Radius of circle spirals inwards with increasing s due to 1/r dependence of am-
plitude and decreasing obliquity factor.

• At the origin, ϕ = 2nπ. At the top, ϕ = (2n+ 1)π.

The first zone is up to the phase relative to the first being less than or equal to
π:

πρ2

λR
≤ π ⇒ ρ2 ≤ λR

The nth zone satisfies:

(n− 1)π ≤ πρ2

λR
≤ nπ√

(n− 1)λR ≤ ρ ≤
√
nλR

Figure 3: Another diagram interpretation

ρn =
√
nλR
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3.7.3 Poisson’s spot

3.7.4 Fresnel zone plates

Blocks out alternate Fresnel half-period zones.

Figure 4: D is the focal length

For example, if the first three odd zones are blocked as shown in the above diagram i.e.
only n = 2, 4, 6 get through, the phasor diagram consist of three half circles on the left
side:

You get an intensity that is 36 times the unobstructed intensity.

Hence, we can design the zone plate to achieve focusing at particular distances.

Primary focal length:

f0 =
ρ21
λ

=
ρ2n
nλ
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4 Interference

4.1 Fourier Transform Spectroscopy

Consider superposition of 2 monochromatic waves,

Ψ = ℜ[ψ1e
−ω1t + ψ2e

−ω2t]

Interference formula [using ℜ(A) = 1
2
(A+ A∗)]:

I(x) ∝ Ψ2 =

(
1

2

[
ψ1e

−iωt + ψ2e
−iωt + ψ∗

1e
iωt + ψ∗

2e
iωt
])2

Considering ⟨I⟩, fast oscillating terms average to zero:

⟨I⟩ = 1

2
⟨a21⟩+

1

2
⟨a22⟩+ ⟨a1a2ℜ[ei(∆ϕ−∆ωt)]⟩

where ∆ϕ is the difference in phase and ∆ω is the difference in angular frequency.

More generally for broadband light:

I(x) = I1 + IFT [S(k)] = I1 +

∫ ∞

−∞
S(k)eikx

where S(k) is the spectrum in k-space.

When doing Fourier transform, make the S(k) symmetrical about the x-axis. Exam-
ple: for a spectrum having a top-hat shape from k −∆k/2 to k +∆k/2, the S(k) is a
convolution of two delta function at k and −k with a top-hat function of width ∆k.

The reverse can be done to be find the spectrum of the source:

S(k) ∝
∫ ∞

−∞
[I(x)− I1]e

−ikxdx

Fringe visibility =
Imax − Imin
Imax + Imin

Spectral resolution:

∆λ

λ
=

λ

2∆x

where ∆x is the mirror displacement.

Examples:
(1) Dichromatic:

I(x) = I0[1 + cos k0x · cos∆kx]
(2) Dichromatic with finite width spectral line:

I(x) = I1[1 + e−
(∆kx)2

2 · cos k0x · cos∆kx]
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Example: spectrum containing two closely-spaced wavelength components.
In k-space,

After Fourier transform, the intensity pattern is:

I(x) = I0[1 + cos k0x · cos∆kx]

Envelope wavelength:

xenv =
2π

∆k

Fast oscillation wavelength:

xfast =
2π

k0
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4.2 Michelson interferometer

1. How it works: light from a point source is transformed into parallel beams and
then split at the beam splitter. They travel along different perpendicular paths
and finally recombine and focused at the detector.

2. An interference pattern is observed at the detector. Constructive and destructive
interference happens depending on the path difference of the two beams.

3. One can see fringe patterns by varying the displacement of the movable mirror to
change path difference and plot the intensity at detector against mirror position.

Intensity pattern:

The two beams can be described by aeiωt and aeiωt+iϕ. Note that ϕ = kx,

Using interference formula:

I = 2× 1

2
⟨a2⟩+ ⟨a2ℜ[eikx]⟩ = I0(1 + cos kx)

4.3 Thin film interference
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Interference between wave reflected at the top surface and the wave reflected from the
bottom surface.

Note: if waves travelling in lower refractive index (higher impedance) medium reflect
off higher refractive (lower impedance) index medium , phase change of π.

For near normal incidence, and where λ′ = λ/n

(i) For minimum intensity, path difference 2d = mλ′

(ii) For maximum intensity, path difference 2d = (m+ 1
2
)λ′

Expression for phase difference due to path difference can be found by some
trigonometry and Snell’s law:

δpath = 2π × 2 · (d cos θ)
λ′

where λ′ is the wavelength in the medium.

Intensity pattern:

I(δ) = I0
(
1−ℜ[eiδ]

)
with the minus sign to account for the π phase change from reflection.

Examples: Newton’s Ring (happens when air gap is formed between surfaces, used in
quality control of optical surfaces), soap films, thin film of oil on water.

4.4 Fabry-Perot Etalon (multi-beam interference)

High resolution spectroscopy.
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o.p.d. = 2 sec θ − l sin θ

= 2d

(
1

cos θ
− sin2 θ

cos θ

)
= 2d cos θ

extra phase for round trip: δ = k × (2d cos θ)

Amplitude transmission coeff: A = T (1 +Reiδ +R2e2iδ +R3e3iδ + ...)︸ ︷︷ ︸
Geometric progression

=
T

1−Reiδ

Intensity transmission coeff: B = AA∗ =
T 2

1 +R2 − 2R cos δ

The peaks are located at cos δ = 1 so δ = 2mπ, (assuming normal incidence)

Finding position of half-width at half maximum:

Half power points:
T 2

2(1−R)2
=

T 2

(1−R)2︸ ︷︷ ︸
maximum intensity

(
1

1 + 4R
(1−R)2

sin2(δ1/2/2)

)

Solve for δ1/2.

Free spectral range is the wavelength difference at which overlapping takes place.

−4πd

λ
= 2mπ ⇒ 2d

λ
= m

∴ −2d

λ2
∆λ = ∆m = 1 (for neighbouring peaks)

dcrit =
λ2

2∆λ
and ∆λ =

λ

m

Benefits: very fine resolution of closely spaced peaks.
Drawback: suffer from free spectral range problem, as ∆λ increases, dcrit shrinks to
impossible values.

The intensity graph looks like this:
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