
Physics A - Quantum Mechanics

By Shikang Ni

Those are just the bare minimum things you need to know about
Quantum Mechanics, practice many questions to learn the subject

E = ℏω and p = ℏk

1 Wavefunction formulation

1.1 Normalisation

|Ψ(x, t)|2 = ΨΨ∗

Important: only |Ψ|2 has physical significance.

Probability density: P (x, t) dx = |Ψ(x, t)|2dx∫ +∞

−∞
|Ψ(x, t)|2dx = 1

Finding probability of unnormalised wavefunction:

P =

∫ b

a
|Ψ|2dx∫∞

−∞ |Ψ|2dx

1.2 Travelling wave

A travelling wave represents a free particle whose momentum and energy are known
precisely, but whose position is completely unknown.

E =
1

2
mv2 =

p2

2m
=

ℏ2k2

2m

For a free particle: ω =
ℏk2

2m

Ψ(r, t) = Aei(k·r−ωt) = Ae
i
ℏ (p·r−Et)

However, the travelling plane wave form of wavefunction is not square integrable and
therefore cannot be normalised.
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1.3 Momentum wavefunction

Mathematics: Fourier transform

Ψ(x, t) =
1√
2π

∫ +∞

−∞
g(k)ei(kx−ωt)dk

This is akin to a weighted linear combination of plane waves.

For t = 0,

Ψ(x) =
1√
2π

∫ +∞

−∞
g(k)eikxdk

Also,

g(k) =
1√
2π

∫ +∞

−∞
Ψ(x)e−ikxdk

g(k) is the momentum wavefunction and |g(k)|2 dk is the probability that a measure-
ment of the particle’s wavenumber will yield a value in the range dk at k.

g(k) is the Fourier transform of Ψ(x). Ψ(x) is the inverse Fourier transform of g(k).

Gaussian distribution:

f(x) = e−
(x−µ)2

2σ2

with peak at x = µ and width = σ

Gaussian integral: ∫ +∞

−∞
e−x2

dx =
√
π

Translation in Fourier transform:

F−1[f(k − k0)] = eikaF−1[f(x)]

Scaling in Fourier transform:

F−1[e−ck2 ] ∝ e−
x2

4c

Example of Gaussian wavepacket:

g(k) =

(
a2

π

)1/4

e−a2(k−k0)2/2

Performing Fourier Transform: use substitution to collapse exponent into a square and
also completing the square when necessary.

Ψ(x) =

(
1

πa2

)1/4

eik0xe−
x2

2a2
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1.4 Expectation values and uncertainty

⟨x⟩ =
∫ +∞

−∞
x|Ψ(x)|2dx

⟨x2⟩ =
∫ +∞

−∞
x2|Ψ(x)|2dx

∆x =
√
⟨x2⟩ − ⟨x⟩2

For Gaussian wavepacket, ∆x∆px = ℏ
2
(minimum uncertainty).

In general, Heisenberg’s uncertainty principle:

∆x∆px ≥
ℏ
2

1.5 Time evolution of wave packet

A general wave packet can be thought of as comprising of a travelling carrier wave
multiplied by an envelope.

Ψ(x, t) = eik(x−vpt)︸ ︷︷ ︸
Carrier

f(x− vgt)︸ ︷︷ ︸
Envelope

where the phase velocity, vp, is the rate of progression of the carrier’s phase front,
but its not physical:

vp =
ω

k

and the group velocity, vg, is the velocity of the wave packet/envelope:

vg =
dω

dk

∣∣∣
k0

Dispersion relation

ω(k) = ω(k0) +
dω

dk

∣∣∣
k0
δk +

1

2

d2ω

dk2

∣∣∣
k0
(δk)2

δω = vgδk +
1

2

d2ω

dk2

∣∣∣
k0
(δk)2︸ ︷︷ ︸

Dispersive term

If the quadratic term is non-zero, the wave packet disperses meaning it changes shape
as it propagates. In contrast, if the dispersion relation is linear, the wave packet does
not spread as it propagates.

Example: Time evolution of Gaussian wave packet
The idea is to do the inverse fourier transform of g(k) with the t term. Technique is to
use completing the square and substitution to make it into Gaussian integral form.
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1.6 Position and momentum representation of wavefunction

Momentum representation is the FT of position representation. p = ℏk ⇒ k = p
ℏ

with an extra factor of 1√
ℏ

Φ(p) =
1√
2πℏ

∫ +∞

−∞
Ψ(x)e−ipx/ℏdx [FT of ψ(x)]

Ψ(x) =
1√
2πℏ

∫ +∞

−∞
Φ(p)eipx/ℏdp [IFT of Φ(p)]

where Φ(p, t) = 1√
ℏg(

p
ℏ , t)

1.7 Schrodinger’s Equation

iℏ
∂Ψ(x, t)

∂t
= − ℏ2

2m

∂2Ψ(x, t)

∂x2
+ V (x, t)Ψ(x, t)

Total energy operator (Hamiltonian): Ê = iℏ
∂

∂t

Momentum operator: p̂ = −iℏ ∂
∂x

= −iℏ∇

Kinetic energy operator:
p̂2

2m
= − ℏ2

2m

∂2

∂x2
= − ℏ2

2m
∇2

The Hamiltonian is the sum of potential and kinetic energy i.e. total energy.

Ĥ = − ℏ2

2m
∇2 + V̂ (r, t)

More succinctly in terms of operators, the Schrodinger’s equation becomes:

ĤΨ(r, t) = iℏ
∂Ψ(x, t)

∂t

1.8 Time-independent wave equation

Potential is a function of position only, independent of time.

− ℏ2

2m
∇2Ψ(r) + V (r)Ψ(r) = EΨ(r)

ĤΨ(r) = EΨ(r)

∇2Ψ(r) =
2m(E − V )

ℏ2
Ψ(r)

Use separation of variable to solve Schrodinger’s equation.

Solution eigenfunction: Ψ(r, t) = Ψ(r)e−iEt/ℏ

with corresponding eigenvalue E.
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1.9 Probability current

Continuity equation: ∇ · J+
∂|Ψ|2

∂t
= 0

Probability current:

J(r, t) =
ℏ
i

1

2m
[Ψ∗∇Ψ−Ψ∇Ψ∗] = Re

[
Ψ∗ ℏ
im
∇Ψ

]
= Re

[
Ψ∗ p̂

m
Ψ

]
Derivation, consider:

J = −dP
dt

= − ∂

∂t

∫
V

ΨΨ∗ dV

1.10 Solving Schrodinger’s equation

1. Set up potential function

2. Find k values for the different regions

k =

√
2m(E − V )

ℏ

3. Write down Ψ(x).
If k is real, obtain oscillatory solution:

Ψ(x) = Aeikx︸ ︷︷ ︸
rightward

+B−ikx︸ ︷︷ ︸
leftward

= A′ sin kx+B′ cos kx

If k is imaginary, obtain evanescent solution:

Ψ(x) = Ceκx +De−κx

4. Apply boundary conditions

• Continuity of Ψ(x) [otherwise get infinite momentum]

• Continuity of ∂Ψ(x)
∂x

[otherwise get infinite acceleration]

5. Normalisation ∫ +∞

−∞
|Ψ(x, t)|2dx = 1

6. Probability flux:

J = velocity× prob =
ℏk
m
|A|2
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Reflection amplitude: r =
k1 − k2
k1 + k2

Transmitted amplitude: t =
2k1

k1 + k2

Reflection probability flux: R =
J−
1

J+
1

= |r|2

Transmitted probability flux: T =
J+
2

J+
1

= |t|2
k2

k1

Quantum tunnelling

T1 = |t1|2
κ2
k1

and T2 = |t2|2
k1
κ2

where

|t1|2 =
∣∣∣∣ 2k1
k1 + iκ2

∣∣∣∣2 and |t2|2 =
∣∣∣∣ 2iκ2
k1 + iκ2

∣∣∣∣2
T = T1T2e

−2κ2a =

(
4k1κ2
k21 + κ22

)2

e−2κ2a ≈ e−2κ2a

On passing through the potential barrier, the wave is attenuated by a factor of e−2κa.

Infinite potential well

En − V0 =
ℏ2k2

2m
=

ℏ2π2n2

2ma2

where k is quantized, kx = πn
a
, ky =

πm
b
, kz ... (in the case of 3D well)

Ψn(x) =


√

2
a
cos(knx) for n odd√
2

a
sin(knx) for n even

Interpretations:

1. Allowed energy levels are discrete

2. Quantisation is a direct consequence of confinement

3. Infinite number of bound states for infinite well

4. Lowest allowed energy level is non-zero ⇒ zero-point energy

5. The wavefunctions are the eigenfunctions of the Hamiltonian operator with the
energies as the associated eigenvalues

6. The wavefunctions of different states n are orthogonal
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1.11 Harmonic oscillator

At low enough energies, many systems are close to their ground state and a quadratic
approximation may be sufficiently accurate to describe the behaviour of the system.
(Expansion to quadratic term in Taylor series)

V (x) =
1

2
mω2x2 or V (r) =

1

2
mω2r2 (in 3D)

∂2Ψ(x)

∂x2
+

[
2mE

ℏ2
− m2ω2x2

ℏ2

]
Ψ(x) = 0

Solving the Schrodinger’s equation:

1. Write the wave equation in dimensionless form
Define:

q = x

√
mω

ℏ
and ϵ =

2E

ℏω
Giving:

∂2χ(q)

∂q2
+ [ϵ− q2]χ(q) = 0

2. Look at limiting form a |q| → ∞

χ(q) ∝ e−q2/2

3. Guess the form of solution

χ(q) = H(q)e−q2/2

Substituting back:

∂2H

∂q2
− 2q

∂H

∂q
+ (ϵ− 1)H = 0 (Hermite’s equation)

Solved using power series solution and the solution is given by Rodrigue’s formula:

Hn(q) = (−1)neq2 d
n

dqn

(
e−q2

)
After substitution and observation, will realise that n = 1

2
(ϵ − 1) is an integer.

Hence, we get the familiar energy levels of a SHO

En =

(
n+

1

2

)
ℏω

4. The solution
ψn(x) ∝ Hn

[
x
mω

ℏ

]
e−

mω
2ℏ x2
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5. Drawing wavefunction

1. Gaussian shape of ground state wavefunction, symmetry of a few excited states
2. Constant energy level separation, ℏω
3. Leaking of wavefunction into classically forbidden region
4. Wavefunction at higher energy has higher amplitude near the edge (transition
to classical limit)

1.12 Parity operator

Effect: reflect a wavefunction through the process x→ −x or r→ −r
i.e. θ → π − θ and ϕ→ ϕ+ π

P̂ψn = (−1)n−1ψn

Each allowable wavefunction is an eigenstate of the parity operator, with eigenvalue of
+1 (even, symmetric) or −1 (odd, antisymmetric).

1.13 Correspondence principle

The correspondence principle states that quantum mechanics predicts the same ob-
servational result as classical physics in the limit of large quantum numbers (at high
energies).

Extra note:

1. The kinetic energy part of the Hamiltonian can be split into radial part and
angular part (similar to orbits):

Ĥ =
p̂2

2m
+ V̂ =

p̂2r
2m

+
L̂2

2mr2
+ V̂

where L̂ = l(l + 1)ℏ2
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2 Some additional information

1. In a well, ⟨px⟩ = ⟨py⟩ = ⟨pz⟩ = 0 so ⟨p2x⟩ = ∆p2x etc...

2. Fewer nodes means lower energies.

3 Tripos Q & A

Q1:
(a) Explain the concept of parity in relation to potentials V(x).
(b) Explain why the ground state must be parity symmetric.

A1:
(a) Kinetic is invariant with respect to parity. For the Hamiltonian to be an eigen-
state of the parity operator, V (x) = V (−x).

(b) The ground state has the least energy. All the odd parity functions must have
at least one node which raises the kinetic energy term. To minimise kinetic energy,
there has to be no node so the ground state is parity symmetric.
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4 Operator formulation

|b⟩ is a ket vector. ⟨a| is a bra vector (dual vector).

Equivalent expressions for inner products,

⟨a|b⟩ = a†b =

∫
ψ∗(x)ϕ(x) dx

If the inner product is taken between states |ψ⟩ and |ϕ⟩, it is measuring the overlap
between the 2 states. The probability of observing the system to be in state |ψ⟩ given
that it was in state |ϕ⟩ is given by:

Overlap probability = | ⟨ψ|ϕ⟩ |2

Orthonormal: ⟨an|bn⟩ = δnm

Completeness relations:
∑
n

|an⟩ ⟨an| = Î

Vector representation: |a⟩ =
∑
n

an |an⟩

Expansion coefficient: am = ⟨am|a⟩ ,projection of |a⟩ onto |am⟩

*Operators can be represented as matrix*

Matrix elements of operators: Anm = ⟨un| Â |um⟩

Proof:
Â |a⟩ = ÎÂÎ |a⟩ =

∑
n,m

|un⟩ ⟨un| Â |um⟩ ⟨um|a⟩

⇒ Â |a⟩ =
∑
n,m

|un⟩Anm ⟨um|a⟩ (Projection)

Adjoint: ⟨um| Â |un⟩ = ⟨un| Â† |um⟩∗

Self-adjoint/Hermitian: Â† = Â

Â |ψ⟩ = |ϕ⟩ and ⟨ψ| Â† = ⟨ϕ|

All Hermitian operator can be diagonalised by unitary transformation U.

UÂU † = diag(λ1, λ2, ...)
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Checking whether operator is Hermitian/observable

For any observable, there is an associated hermitian operator Â which denotes the act
of measurement.

Observable ←→ Hermitian operator.

⟨ϕ| Â |ψ⟩ = ⟨ψ| Â |ϕ⟩∗∫ +∞

−∞
ϕ∗(x)Âψ(x) dx =

[∫ +∞

−∞
ψ∗(x)Âϕ(x) dx

]∗
(self-adjoint)

Why are observables represented by Hermitian operators: their expectation values
(measured values) are always real.

Proof:
⟨A⟩ = ⟨ψ| Â |ψ⟩ = ⟨ψ| Â† |ψ⟩∗ = ⟨ψ| Â |ψ⟩∗ = ⟨A⟩∗

Expectation value: ⟨A⟩ = ⟨ψ| Â |ψ⟩

Also: ⟨A2⟩ = ⟨ψ| Â2 |ψ⟩

∆A =
√
⟨A2⟩ − ⟨A⟩2

Commutation

Commutator: [Â, B̂] = ÂB̂ − B̂Â

For a composite operator to be an observable, its individual parts must be observables,
and they must commute.

Example: [x̂, p̂] = iℏ:

p̂x̂ |ψ⟩ = −iℏ d
dx

[xψ(x)] = .. by parts .. = −iℏ |ψ⟩+ x̂p̂ |ψ⟩

Position and momentum do not commute, they do not share eigenbasis, so it is not
possible to measure position and momentum without one measurement perturbing
the other (uncertainty principle).

Commute ←→ compatible: if Â is known, B̂ is known with certainty as well.

Anti-commutator: Ĉ = {Â, B̂} = ÂB̂ + B̂Â = Ĉ†

If Â and B̂ are two non-commuting observables, we can create a composite operator
(anti-commutator) that does commute, and so is an observable. We could also do it by
multiplying by i.

Ĉ = i[Â, B̂] = Ĉ†
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Eigenvectors, eigenstates and eigenvalues

When an operator acts on one of its eigenvectors, the eigenvector is returned, scaled by
its eigenvalue ∈ C.

Â |an⟩ = an |an⟩

Operator in diagonal form: Â =
∑
m

am |am⟩ ⟨am|

Works by projecting original vector |a⟩ onto the eigenvectors, scaling by the eigenvalues,
and then reconstructing the result as a weighted linear combination of eigenvectors.

Adjoint: Â† =
∑
m

a∗m |am⟩ ⟨am|

1. If a system is in one of the eigenstates of an observable, the numerical value of a
measurement is the eigenvalue, and this value is measured with zero uncertainty.

2. Eigenstates corresponding to different eigenvalues are orthogonal.

3. Degenerate eigenstates (share same eigenvalue): two eigenstates can yield the
same measurement. Also, any linear combination of degenerate states is also an
eigenstate.

Repeated measurements

When an observable is first measured, the wavevector collapses into the eigenstate of
the value measured. Multiple repeated measurements yield the same measured value
with certainty.

Born’s Rule - probability of a measurement

For any general vector |ψ⟩ =
∑

n cn |an⟩, consider the expectation value of an operator:

⟨A⟩ = ⟨ψ| Â |ψ⟩ = ... =
∑
n

an|cn|2

where Pn = |cn|2 = | ⟨an|ψ⟩ |2 is the probability of measuring the eigenvalue an.

Adding wavefunctions

Ensure it is normalised and factor in phase difference eiα as well.
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State vectors

Figure 1: A general state vector |ψ(t)⟩ in terms of of the eigenstates |ϕn⟩ of some oper-
ator. The state vector moves around the vector space as time progresses (the coefficient
of expansion are functions of time), but then jumps to one of the eigenstates, say |ϕ3⟩
when a measurement is made. The probability of the jump is given by | ⟨ψ|ϕn⟩ |2. The
recorded value is the eigenvalue, say a3. If no further measurement is taking place, the
system evolves and the state vector can again start to move around the space. however,
if the collapsed eigenvector is an eigenvector of the Hamiltonian operator, the state
vector does not move away from it.

4.1 Heisenberg’s generalised uncertainty principle

For two observables with operators Â and B̂, they have the following uncertainty
relationship:

∆A∆B ≥ 1

2

∣∣∣〈 [Â, B̂] 〉∣∣∣
So, if they do not commute (cannot be made to share an eigenbasis) then we cannot
know them both simultaneously.

To prove, start by considering,

|ϕ⟩ =
(
Âd + iλB̂d

)
|ψ⟩

where Âd = Â− ⟨A⟩, is the deviation from mean value.
Then, find λ for ⟨ϕ|ϕ⟩min:

d ⟨ϕ|ϕ⟩
dλ

= 0 noting that ⟨ϕ|ϕ⟩min ≥ 0

Solution to minimum uncertainty state: Gaussian wavepacket.
By setting:

(Âd + iλB̂d) |ψ⟩ = 0

One might obtain a differential equation to be solved.
Example: for position and momentum:

ψ(x) = e−
(x−⟨x⟩)2

2ℏλ e
i⟨p⟩x

ℏ
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4.2 Density operators - statistical mixing

Another way of writing expectation value:

⟨A⟩ = Tr
[
Â |ψ⟩ ⟨ψ|

]
Proof:

⟨A⟩ = ⟨ψ| Â |ψ⟩ =
∑
r

⟨ψ|ur⟩ ⟨ur| Â |ψ⟩ =
∑
r

⟨ur| Â |ψ⟩ ⟨ψ|ur⟩ = Tr
[
Â |ψ⟩ ⟨ψ|

]

⟨A⟩ = Tr[ÔÂ]

where

Density operator: Ô =
I∑

i=1

Pi |ψi⟩ ⟨ψi|

Normalisation by Tr[Ô] = 1 and it is self-adjoint.

Pure state Ô = |ψ⟩ ⟨ψ| (only one term) iff Ô2 = Ô (idempotent for a pure state only).

If Ô2 ̸= Ô, it is a mixed state Ô =
∑I

i=1 Pi |ψi⟩ ⟨ψi|, with I ≥ 2

Application: interference phenomena and entanglement.

4.3 Functions of operators

The definition of function of operators uses power series of the function, replacing the
variables with the operator.

Result:

F (X̂) =
∑
i

F (xi) |ψi⟩ ⟨ψi|︸ ︷︷ ︸
projection

Preserve eigenvector but eigenvalue is F (xi).

Example: density operator ρ̂ = 1
Z
e−Ĥ/kT

4.4 Useful tricks for evaluating summation
∞∑
n=0

nxn = x
d

dx

(
∞∑
n=0

xn

)
x→ e−a

∞∑
n=0

ne−an = − d

da

(
∞∑
n=0

e−an

)
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5 Quantum Harmonic Oscillator

Hamiltonian:

Ĥ =
p̂2

2m
+

1

2
mω2x̂2

Raising and lowering operators:

â =

√
mω

2ℏ

(
x̂+

i

mω
p̂

)
(lowering)

â† =

√
mω

2ℏ

(
x̂− i

mω
p̂

)
(raising)

They have simple commutation relation:

[â, â†] = 1 ⇒ â†â+
1

2
= ââ† − 1

2

They are not Hermitian. We can define a number operator (which is Hermitian):

N̂ = â†â =
1

ℏω

(
Ĥ − 1

2
ℏω
)

Hence, we can write:

Ĥ = ℏω
(
â†â+

1

2

)
= ℏω

(
N̂ +

1

2

)
= ℏω

(
ââ† − 1

2

)

The energy ladder:

Suppose that |n⟩ is an energy eigenstate of Ĥ with eigenvalue En:

Ĥ |n⟩ = En |n⟩ =
(
n+

1

2

)
ℏω |n⟩

It can be shown that:
Ĥ(â |n⟩) = (E − ℏω)(â |n⟩)

Ĥ(â† |n⟩) = (E + ℏω)(â† |n⟩)

This confirms the behaviour of the raising and lowering operator.

The lowest energy state

Since energy must remain positive, the lowering operator cannot act indefinitely. The
lowest energy state of the oscillator is the ground state:

â |0⟩ = 0

15



Normalisation:

Let â† |n⟩ = An |n+ 1⟩ and requiring that ⟨n|n⟩ = 1. Consider the norm of the vector:

|An|2 ⟨n+ 1|n+ 1⟩ = ⟨n| ââ† |n⟩ = n+ 1

⇒ An =
√
n+ 1

Hence,
â† |n⟩ =

√
n+ 1 |n+ 1⟩

Likewise,
â |n⟩ =

√
n |n− 1⟩

For a general eigenstate, which was raised n times from |0⟩:

|n⟩ = (â†)n√
n!
|0⟩ (1)

Wave function:

From â |0⟩ = 0 and writing it as a differential equation,√
mω

2ℏ

(
x̂+

i

mω
p̂

)
ψ0(x) = 0

xψ0 +
ℏ
mω

dψ0

dx
= 0

dψ0

ψ0

= −mωx
ℏ

dx

Solved easily to give:
ψ0(x) = c0e

−mωx2/2ℏ

and c0 can be determined easily by normalizing the Gaussian. Higher-order states can
be generated using equation (1) and the result will be a series of Hermite polynomials
times the Gaussian factor.

Uncertainty in position and momentum

x̂ and p̂ can be written in terms of â and â† and uncertainty can be found using the
relation:

(∆A)2 = ⟨A2⟩ − ⟨A⟩2
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Coherent state

The condition:
â |λ⟩ = λ |λ⟩

(can be shown) to be sufficient to guarantee that the uncertainties in position and mo-
mentum will be equal. This also gives a minimum uncertainty wave packet. Hence, the
coherent state of a harmonic oscillator is an eigenstate of the lowering operator.

The state can be expanded in the complete number basis:

|λ⟩ =
∞∑
n=0

cn |n⟩

LHS: â
∞∑
n=0

cn |n⟩ =
∞∑
n=1

cn
√
n |n− 1⟩ =

∞∑
m=0

cm+1

√
m+ 1 |m⟩

Equating LHS = RHS:

λcn = cn+1

√
n+ 1⇒ cn+1 =

λ√
n+ 1

cn

Solving the recursive relationship gets us:

cn =
λn√
n!

Therefore, the (unnormalised) coherent states of a SHO is:

|λ⟩ =
∑
n

λn

n!
(â)n |0⟩ = eλâ

† |0⟩

This corresponds to a Poisson distribution of number states.

Time evolution

Applying the time shift operator and note that ωn = ω(n+ 1
2
),

|λ, t⟩ = e−iĤt/ℏ |λ⟩ =
∑
n

λne−iωnt

√
n!

|n⟩

= e−iωt/2
∑
n

(λe−iωt)n√
n!

|n⟩

= e−iωt/2
∣∣λe−iωt

〉
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6 Time-dependent Quantum Mechanics

Schrodinger’s picture: quantum states vary with time.
Heisenberg’s picture: operators change with time, not states.

Postulates of Quantum Mechanics

1. A state vector |ψ⟩ represents the most complete knowledge we have about a
system.

2. For every observable A, there exist a linear Hermitian operator Â, and the result
of measurement must be one of the eigenvalues of A.

3. The probability of obtaining an is | ⟨an|ψ⟩ |2 (Born’s rule) OR | ⟨Ψ|Φ⟩ |2 where
Ψ is the state it was in and Φ is the state it might be found in (overlap integral).

4. As a result of measurement, the state of the system is changed discontinuously to
the corresponding eigenstate |an⟩

5. Between measurements, the state evolve deterministically in time according to:

Ĥ |ψ⟩ = iℏ
∂ |ψ⟩
∂t

= E |Ψ⟩

This gives the phase part of any wavefunction, e−iEnt/ℏ.

6.1 Time-dependent state (state propagator)

If the system has a new Ĥ, the original wavefunction will no longer be an energy eigen-
state of the new system. To evolve it in time we have to expand it in terms of the
eigenstates of the new Ĥ and evolve each individually.

To time propagate, write the state as linear combinations of energy eigen-
states (i.e. eigenvectors of Ĥ or stationary states):

|ψ(t)⟩ =
∑
n

cn(t) |ϕn⟩

Solving the time-dependent Schrodinger’s equation (integrating the first-order DE) and
evolving each component of energy eigenstate with time:

|ψ(t)⟩ =
∑
n

cn(0)e
−iEnt/ℏ |ϕn⟩

where ωn = En/ℏ and cn(0) = ⟨ϕn|ψ(t = 0)⟩.

So, overall:

|Ψ(t)⟩ = |Ψ(t = 0)⟩ e−iEt/ℏ

18



Time shift/time evolution operator

In general from t = t0 to t,

|ψ(t)⟩ = e−iĤ(t−t0)/ℏ︸ ︷︷ ︸
Û : time shift

|ψ(t0)⟩

Unitary operator: Û Û † = Û †Û = Î

Ehrenfest’s Theorem

Equation of motion for the expectation value of any operator:

d⟨Â⟩
dt

=
i

ℏ

〈 [
Ĥ, Â

] 〉
+ ⟨dÂ

dt
⟩︸ ︷︷ ︸

zero

Proof: ⟨Â⟩ = ⟨ψ(t)| Â |ψ(t)⟩, product rule and d
dt
= 1

iℏĤ

Key points:

1. If operator commutes with Ĥ , the observable is a conserved quantity.

2. Stationary state: are eigenfunctions of the Hamiltonian i.e. energy eigenstate.
The probability density function is independent of time.

Time propagation

⟨Â⟩ = ⟨ψ(t)| Â |ψ(t)⟩ =
∑
mn

c∗mcne
i(Em−En)t/ℏ ⟨ϕm| Â |ϕn⟩︸ ︷︷ ︸

Amn

6.2 Commutation relations

The below relations can be proven by induction.

If [Â, B̂] = C ∈ C, [
Â, B̂l

]
= C

dB̂l

dB̂[
B̂, Âl

]
= −CdÂ

l

dÂ
In general: [

Â, F (Â, B̂)
]
= C

∂F (Â, B̂)

∂B̂[
B̂, F (Â, B̂)

]
= −C∂F (Â, B̂)

∂Â

Other useful results: [
ÂB̂, Ĉ

]
= Â

[
B̂, Ĉ

]
+
[
Â, Ĉ

]
B̂
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6.3 Time-energy uncertainty

Combining:
d⟨Â⟩
dt

=
i

ℏ
⟨
[
Ĥ, Â

]
⟩ and ∆E∆A ≥ 1

2

∣∣∣⟨i [Ĥ, Â]⟩∣∣∣
We obtain:

∆E∆t ≥ ℏ
2

Connection between uncertainty in energy to rate of change of observable of the system.

6.4 Heisenberg’s picture

Time evolution of operator:

iℏ
dÂĤ

dt
=
[
ÂĤ , Ĥ

]
= Û †

[
Â, Ĥ

]
Û

Proof: Start from
dÂĤ

dt
=

d

dt

(
Û †ÂÛ

)
Time evolution of density operator

Von-Neumann equation: iℏ
dÔ

dt
=
[
Ĥ, Ô

]
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7 3D Quantum Mechanics

Orbital angular momentum

Start with classical definition of angular momentum:

L = r× p =

∣∣∣∣∣∣
ex ey ez
x y z
px py pz

∣∣∣∣∣∣
So,

Lz = x̂p̂y − ŷp̂x etc...

Another form but scaled:

Lz = x
∂

∂y
− y ∂

∂x
etc...

Orbital angular momentum is hermitian: L̂ = L̂
†
. It is an observable.

Some commutation relations

1. Position and momentum:
[r̂j, p̂k] = iℏδjk

2. Components of angular momentum:[
L̂x, L̂y

]
= iℏL̂z

In general, [
L̂i, L̂j

]
= iℏ ϵijkL̂k

Different components of angular momentum do not commute with each other.
No two components can be known precisely. Only one component of L̂ can be
measured precisely, usually the z-component, by convention.

3. L̂2 and components of angular momentum:

L̂2 = L̂ · L̂ = L̂2
x + L̂2

y + L̂2
z[

L̂2, L̂x

]
=
[
L̂2, L̂y

]
=
[
L̂2, L̂z

]
= 0

They are compatible observables, so they share the same eigenstates.
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7.1 Raising and lowering operators

Ladders operators increasing/decreasing the z component of the angular momentum by
ℏ:

Raising operator: L̂+ = L̂x + iL̂y

Lowering operator: L̂− = L̂x − iL̂y

Key results:

L̂2 |l,ml⟩ = l(l + 1)ℏ2 |l,ml⟩

L̂z |l,ml⟩ = mlℏ |l,ml⟩

L̂± |l,ml⟩ = ℏ
√
l(l + 1)−ml(ml ± 1) |l,ml ± 1⟩

ml ∈ −l,−l + 1, ...,−1, 0, 1, ...l − 1, l

where l is called the orbital angular momentum quantum number.
l = 0, 1, 2, 3, 4, ...,n − 1 where the first 4 are called s, p, d, f, g states respectively.
n is the principle quantum number (a non-negative integer).

ml is called the magnetic angular momentum quantum number.

Derivation

Suppose |ϕα⟩ is an eigenstate of L̂z having eigenvalue αℏ:

L̂z |ϕα⟩ = αℏ |ϕα⟩

Now,
L̂zL̂± |ϕα⟩ = (α± 1)ℏ L̂± |ϕα⟩

L̂± |ϕα⟩ is an eigenstate of L̂z with eigenvalue (α± 1)ℏ.
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Since L̂2 and L̂z commute, |ϕα⟩ is also an eigenstate L̂2 having eigenvalue Λℏ2. We will
find after doing the same procedure that:

L̂2L̂± |ϕα⟩ = Λℏ2 L̂± |ϕα⟩

L̂± |ϕα⟩ is an eigenstate of L̂2 with eigenvalue Λℏ2.

So, the ladder operators generate the eigenstates of L̂z but all of them are eigenstates of
L̂2 having the same eigenvalue Λℏ2. The z-component of angular momentum changes,
but the magnitude of the angular momentum does not.

Writing L̂z in spherical polar form:

L̂z = −iℏ
∂

∂ϕ

So, the eigenstate must be of the form:

ψ ∝ eiαϕ

Since the wavefunction must be single-valued, this means ψ(ϕ+ 2π) = ψ(ϕ) and hence
e2iπα = 1⇒ α has to be integer.

We know that ⟨L̂2
z⟩ ≤ ⟨L̂2⟩ and α2 ≤ Λ. For a given value of Λ, there is some maximum

absolute value of α and α has to be symmetrical about 0.

α = ml = l, l − 1, l − 2, ...,−l + 2,−l + 1,−l

For a fixed angular momentum, the z-component can be increased in unit of ℏ but even-
tually the series must terminate because the z-component cannot exceed the magnitude.
Let the highest eigenstate of L̂z be |ϕΛ,l⟩ such that:

L̂z |ϕΛ,l⟩ = lℏ |ϕΛ,l⟩ and L̂2 |ϕΛ,l⟩ = Λℏ2 |ϕΛ,l⟩

Then, terminating the series:

L̂+ |ϕΛ,l⟩ = 0 and L̂− |ϕΛ,−l⟩ = 0

Using L̂−L̂+ = L̂2 − L̂2
z − ℏL̂2

z , we find:

Λ = l(l + 1)ℏ2
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7.2 Back to wavefunction formulation

Method

In spherical polar coordinates:

p̂ = −iℏ∇ = −iℏ(êr
∂

∂r︸︷︷︸
p̂r

+êθ
1

r

∂

∂θ︸︷︷︸
p̂θ

+êϕ
1

r sin θ

∂

∂ϕ︸ ︷︷ ︸
p̂ϕ

)

Coordinate transform:


ex = sin θ cosϕ er + cos θ cosϕ eθ − sinϕ eϕ

ey = sin θ sinϕ er + cos θ sinϕ eθ + cosϕ eϕ

ez = cos θ er − sin θ eθ

Can find similar expressions for L̂x, L̂y, L̂z, L̂±, L̂
2 by:

1. Transform the following canonical expression for orbital angular momentum into in
spherical polar coordinates:

Lz = xpy − ypx = ... = −iℏ ∂

∂ϕ

2. Use the momentum operator in spherical form in previous page.

L̂2 = −ℏ2∇2
r=1 = −ℏ2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

]
And note the raising and lowering operator trick.

The wavefunction

In spherical polar coordinates, the Hamiltonian takes the forms:

Ĥ = − ℏ2

2m

1

r2
∂

∂r

(
r
∂

∂r

)
+

L̂2

2mr2︸ ︷︷ ︸
centrifugal
potential

+V (r)

The wave function can be broken down into a radial and an angular part:

ψn,l,ml
= Rn,l(r)︸ ︷︷ ︸

radial

Yl,ml
(θ, ϕ)︸ ︷︷ ︸

angular

Note: they can be treated separately as long they each are properly nor-
malised.

The angular part (spherical harmonics):

Yl,ml
(θ, ϕ) = C(sin θ)leimlϕ

The spherical harmonics are orthogonal.
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Probability density∫
dV

|ψ(r, θ, ϕ)|2dV =

∫ ∞

r=0

∫ 2π

ϕ=0

∫ π

θ=0

|Yl,ml
|2|Rn,l|2r2 sin θ dθ dϕ

P (r)dr = |Rn,l|2r2 dr

since ∫ 2π

ϕ=0

∫ π

θ=0

|Yl,ml
|2 sin θ dθ dϕ = 1 (by definition)

7.3 Example 1: Diatomic molecule

For example, this rotor model is suitable for a hydrogen molecule, H2.

El =
L2

2I
=
l(l + 1)ℏ2

2I
with degeneracy 2l + 1

Note: L2 = l(l + 1)ℏ2

Also, a particle exchange is equivalent to parity inversion (r → −r) so this sends

θ → π − θ and ϕ→ ϕ+ π . This has consequences for the exchange symmetry of
spherical harmonics.

Probability of state n:

Pn =
e−βEn∑∞
n=1 e

−βEn

where β = 1
kBT

.

Can find average energy:

⟨E⟩ =
∑

lEl(2l + 1)e
− El

kBT∑
l(2l + 1)e

− El
kBT

7.4 Example 2: Hydrogen-like atom

Coulomb potential: V (r) = − Ze2

4πϵ0r

Energy levels:

En = − ℏ2

2m

Z2

a20

1

n2
= −13.6Z

2

n2
eV

where Bohr radius is:

a0 =
4πϵ0ℏ2

me2
= 0.53 Å
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7.5 Tripos Q & A

Q1: Find the operator for the z-component of the orbital angular momentum in
spherical polar coordinates.

A1: L̂ = r× (p̂r + p̂ϕ + p̂θ) = r× p̂ϕ + r× p̂θ

L̂z = ẑ · L̂ = ẑ · r× p̂ϕ = ẑ × r · p̂ϕ

ẑ × r = r sin θϕ̂ and p̂ϕ = −iℏ∇ϕ = iℏ
1

r sin θ
ϕ̂
∂

∂ϕ

Q2: Explain how it is possible that the Hamiltonian is spherically symmetric, but
that the eigenstate Ψ is not.

A2: Although the Hamiltonian commutes with rotations Lx, Ly and Lz, this does
not mean that the rotations share an eigenbasis, as the Hamiltonian has degenerate
eigenvalues.
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8 Two-particle Systems

8.1 Separable and entangled states

|ψa,b⟩ = ψ(ra, rb, t)

For separable state:
|ψa,b⟩ = |ψa⟩ |ψb⟩

|ψa,b,⟩ can be written as an expansion of M ×N basis vectors |am⟩ |bn⟩:

|ψa,b⟩ =
∑
m

∑
n

ambn︸ ︷︷︸
cmn

|am⟩ |bn⟩

It is a postulate of QM that the set {|am⟩ |bn⟩ ,∀m,n} of M × N basis vectors is a
complete set to describe all possible outcomes of measurements on the system.

The two measurements can be regarded as independent measurements, and the proba-
bilities multiply together to get the probability of the composite outcome.

For entangled state:
|ψ⟩ = C1,2 |a1⟩ |b2⟩+ C2,1 |a2⟩ |b1⟩

In general, for N subsystems:

|ψ⟩ =
∑

n1,...,nN

cn1,...nN
|an1⟩ ... |aaN ⟩

Not possible to attribute one state solely to a and a different state solely to b. Mea-
surement on one subsystem may change the outcome of a measurement on the other.

8.2 Two particles

Hamiltonian:

Ĥ =
p̂2

2m︸︷︷︸
ĤCoM

+
p̂2r
2µ

+ V̂ (r)︸ ︷︷ ︸
Ĥrotating

where µ =
(

1
ma

+ 1
mb

)−1

is the reduced mass. Total energy is ECoM + Er.

Motion of centre of mass:

d⟨R̂⟩
dt

=
⟨p̂⟩

ma +mb

where R =
mara +mbrb
ma +mb

Assume solution of the form: ψ(R, r) = U(R)u(r) separable into motion of centre of
mass and internal motion. Upon solving the Schrodinger’s equation, one gets that the
motion can be decomposed into (1) CoM frame: a free particle having mass ma +mb

(translational behaviour) and (2) internal motion: single particle of mass µ moving in
central potential V (r). (vibrational motion)
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9 Multi-Particle States

Take two particles with some interaction potential V (r1, r2) for particle coordinates r1
and r2, the classical Hamiltonian:

H =
p21
2m1

+
p22
2m2

+ V (r1, r2)

becomes the quantum mechanical operator:

Ĥψ(r1, r2) =

[
− ℏ2

2m1

∇2
1 −

ℏ2

2m2

∇2
2 + V (r1, r2)

]
ψ(r1, r2) = Eψ(r1, r2)

Distinguishable particles

Consider a separable potential i.e. one which acts only on one particle or the other,
V (r1, r2) = V1(r1)+V2(r2), then the Schrodinger’s equation is separable and we obtain
a multiplicative separation wavefunction:

ψ(x) = ψ1(x1)ψ2(x2)

Indistinguishable particles

We can have either particle in either state, it is just a relabelling of r1 ←→ r2, there
are two obvious choices for the spatial part, adjusted by normalisation:

1. ψ−(x) =
1√
2

[
ϕ1(x1)ϕ2(x2)− ϕ1(x2)ϕ2(x1)

]
(antisymmetric)

2. ψ+(x) =
1√
2

[
ϕ1(x1)ϕ2(x2) + ϕ1(x2)ϕ2(x1)

]
(symmetric)

Spin part:
1. |↑⟩1 |↑⟩1 (symmetric)

2. |↓⟩1 |↓⟩2 (symmetric)

3.
1√
2

[
|↑⟩1 |↓⟩2 + |↓⟩1 |↑⟩2

]
(symmetric)

4.
1√
2

[
|↑⟩1 |↓⟩2 − |↓⟩1 |↑⟩2

]
(antisymmetric)

Classification

Bosons have integer spin (s = 0, 1, 2, 3, ...) and have symmetric wavefunction.

Fermions have half-integer spin (s = 1/2, 3/2, 5/2, ...) and have antisymmetric wave-
function.

Fermions, using the minus sign above, cannot occupy the same state, since then ϕ1 = ϕ2

and ψ− = 0, a statement of the Pauli Exclusion Principle. No such restriction holds for
bosons.
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Exchange ”force”

Consider mean squared separation:

d2 = ⟨(x1 − x2)2⟩ = ⟨x21⟩+ ⟨x22⟩ − 2⟨x1x2⟩

Using the corresponding wavefunction ψ(x) to evaluate the expected value.

For distinguishable particles:

d2di = ⟨x2⟩1 + ⟨x2⟩2 − 2⟨x⟩1⟨x⟩2

For indistinguishable particles:

d2ind = ⟨x2⟩1 + ⟨x2⟩2 − 2
(
⟨x⟩1⟨x⟩2 ± ⟨x2⟩12

)
= d2di ∓ 2⟨x2⟩12

For the bosonic + case, the particles are slightly closer together than distinguishable
particles, and for fermions, they are further apart. The cross term goes away if the
wave functions do not significantly overlap, an indication that localization works at
some level.

The “force” is fictitious in a classical sense, but we can think of a bosonic attractive
force pulling two electrons closer together, and a fermionic repulsive force tending to
push two particles apart, this is the so-called “exchange” force.
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10 Spin

Some commutation relations [
Ŝi, Ŝj

]
= iℏ ϵijkŜk

10.1 Raising and lowering operators for spin

Ŝ± = Ŝx ± iŜy

Ŝ± |s,ms⟩ = ℏ
√
s(s+ 1)−ms(ms ± 1) |s,ms ± 1⟩

Ŝ2 |s,ms⟩ = s(s+ 1)ℏ2 |s,ms⟩

Ŝz |s,ms⟩ = msℏ |s,ms⟩

where ms = −s,−s+ 1, ..., s− 1, s

10.2 Components of spin

Given,

Ŝz |↑⟩ =
ℏ
2
|↑⟩ and Ŝz |↓⟩ = −

ℏ
2
|↓⟩

Then,

Ŝx |↑⟩ =
ℏ
2
|↓⟩ and Ŝx |↓⟩ =

ℏ
2
|↑⟩

10.3 Combining spins

Ŝ = Ŝ1 + Ŝ2

Result: 3 triplet symmetric states and 1 singlet antisymmetric state.
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10.4 Total angular momentum

Ĵ = L̂+ Ŝ[
Ĵi, Ĵj

]
= iℏ ϵijkĴk

Ĵ2 |j,mj⟩ = j(j + 1)ℏ2 |j,mj⟩

Ĵz |j,mj⟩ = mjℏ |j,mj⟩

Ĵ± = L̂± + Ŝ±

Ĵ± |j,mj⟩ = ℏ
√
j(j + 1)−mj(mj ± 1) |j,mj ± 1⟩

Ĵz = L̂z + Ŝz

mj = ml +ms

j = (l + s)︸ ︷︷ ︸
maximally
parallel

, (l + s)− 1, ..., |l − s|+ 1, |l − s|︸ ︷︷ ︸
maximally
antiparallel

∗j can never be negative∗

For each j, mj = −j, ..., j

Dimensions:
l+s∑
l−s

(2j + 1) = (2l + 1)(2s+ 1)
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10.5 Stern-Gerlach experiment

Works by passing a beam of particles through a non-uniform magnetic field. The
interaction of the magnetic moment, µ of the particle with the magnetic field exerts a
force on the particle:

F = µ · ∇B

In the z-direction:

Fz = µz
∂Bz(z)

∂z

where
µz = −µBml

with µB = eℏ
2me

being the Bohr magneton. µz is quantized by ml, hence a discrete set
of forces act on a discrete set of particles exiting the apparatus. We would expect an
odd number of beams 2l + 1.

If the angular momentum is intrinsic (i.e. spin only), it is quantized by ms and we have
splitting into 2s+ 1 beams.

Past Tripos questions

1. (2019 Tripos P1 B6) Describe the Stern-Gerlach experiment and how
it could be used to demonstrate the rotation of spins in a magnetic
field.

Second part:

• Use a Stern-Gerlach to create a beam in which we know that all particles
have the same spin.

• This beam can be fed into a uniform field, which would cause the spin
to precess

• The output is feed into another S-G device to see if multiple beams are
produced. Their relative intensities tell us how the intermediate field
have rotated the spin.
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11 Indistinguishable particles

11.1 Fermions and bosons

Fermions: spin half, exchange antisymmetric. (Makes up matter).
Bosons: integer spin, exchange symmetric. (Force mediators).

Bosons obey Bose-Einstein statistics. Average number of bosons in a certain quan-
tum state, j, is given by:

⟨nb
j⟩ =

1

e(Ej−µ)/kT − 1

Fermions obey Fermi-Dirac statistics. Average number of fermions in a certain
quantum state, j, is given by:

⟨nf
j ⟩ =

1

e(Ej−µ)/kT + 1
< 1

Exchange operator

Effect: interchanging indices,

P̂ij |ζi, ζj⟩ = |ζj, ζi⟩ and ⟨ζi, ζj| P̂ †
ij = ⟨ζj, ζi|

P̂ij |ζi, ζj⟩s/a = ± |ζi, ζj⟩s/a

It is Hermitian, and thus an observable and P̂ 2 is the identity:

P̂ †
ij = P̂ij and P̂ †

ijP̂ij = Î

So, we know its eigenvalues are ±1.

Time evolution
Since:

⟨ζi, ζj| Â |ζi, ζj⟩ = ⟨ζj, ζi| Â |ζj, ζi⟩

⟨ζi, ζj| Â |ζi, ζj⟩ = ⟨ζi, ζj| P̂ †
ijÂP̂ij |ζi, ζj⟩

⇒ Â = P̂ †
ijÂP̂ij

P̂ijÂ = ÂP̂ij[
Â, P̂ij

]
= 0

The exchange operator any observable are compatible. Means that no experiment can
distinguish one particle from another, because the particles can be swapped prior to a
measurement without changing the result.

It commutes with the Hamiltonian ⇒ if the wavefunction is exchange symmetric or
antisymmetric, it remains so as it evolves ⇒ meaning fermions do not change into
bosons as time progresses or after a measurement, and vice versa.
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Symmetrisation postulate

states that N identical particles are either exchange symmetric or exchange antisym-
metric. States with mixed symmetry do not exist.

Pauli exclusion principle (only fermions)

Pauli exclusion principle states that no two identical fermions can be in a single parti-
cle state. In other words, two identical fermions cannot have the same set of quantum
numbers.

However, bosons can share states.

11.2 Spin statistics theorem

Bosons have integer spin quantum numbers (s = 0, 1, 2, 3, ...)
Fermions have half-odd-integer spin quantum numbers (s = 1/2, 3/2, 5/2, ...)

11.3 Basis states

11.3.1 Two-particle system

Two-particle system with two energy states.
Suitable basis:

|α1⟩ |α2⟩ , |α1⟩ |β2⟩ , |β1⟩ |α2⟩ , |β1⟩ |β2⟩

If they are identical, basis states becomes:

|α⟩ |α⟩︸ ︷︷ ︸
symmetric

, |α⟩ |β⟩ , |β⟩ |α⟩︸ ︷︷ ︸
no exchange symmetry

, |β⟩ |β⟩︸ ︷︷ ︸
symmetric

Form symmetric and antisymmetric using procedure below:

|s⟩ = 1√
2
[|α⟩ |β⟩+ |β⟩ |α⟩]

|a⟩ = 1√
2
[|α⟩ |β⟩ − |β⟩ |α⟩]

Inverting:

|α⟩ |β⟩ = 1√
2
[|s⟩+ |a⟩]

|β⟩ |α⟩ = 1√
2
[|s⟩ − |a⟩]

We have 3 symmetric states and 1 antisymmetric state.
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Experimental interpretation of basis states:

1. |α⟩ |α⟩ −→ 2 bosons in low energy state

2. |s⟩ −→ a boson in each of the low and high energy state, with no information
about which one is which

3. |β⟩ |β⟩ −→ two bosons in the high energy state

4. |a⟩ −→ a fermion in each of the low and high energy states, with no information
about which one is which

Calculating probabilities - Born’s rule
Uncertainty about which particle is which is maximised.

11.3.2 N particles with M states

There are MN number of such canonical basis:

|ζα1 ⟩ ... |ζri ⟩ ... |ζzN⟩

where i is particle and r is state.

For identical particles i.e. |ζri ⟩ =
∣∣ζrj 〉, then new basis is:

|ζα⟩ ... |ζr⟩ ... |ζz⟩

Similar to the two-particle case, when a pair of particles is swapped, we should observe
the same outcome when an experiment is performed. Hence, it is necessary to sym-
metrise or antisymmetrise the states, depending on the type of particles involved.

Example - 3 particle in 3 states
Canonical basis:

|ζa⟩
∣∣ζb〉 |ζc⟩ a, b, c ∈ {1, 2, 3}

Lowest order state |1, 1, 1⟩ is exchange symmetrise and correspond to finding all 3 bosons
in state 1.

Next state is |1, 1, 2⟩ does not have obvious exchange symmetry. We need to symmetrise
it:

|1, 1, 2⟩s = 1√
3
[|1, 1, 2⟩+ |1, 2, 1⟩+ |2, 1, 1⟩]

corresponding to an entangled state involving all 3 particle permutations where two
particles in state 1 and one particle in state 2.
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Figure 2: Symmetrisation - making bosons

Carry out the same procedure for the next unsymmetrised state e.g. |1, 2, 2⟩

Only one antisymmetric state is available, |1, 2, 3⟩a:

|1, 2, 3⟩a = 1√
3!
[|1, 2, 3⟩ − |1, 3, 2⟩+ |2, 3, 1⟩ − |2, 1, 3⟩+ |3, 1, 2⟩ − |3, 2, 1⟩]

=
1√
3!

∣∣∣∣∣∣
|1⟩ |2⟩ |3⟩
|1⟩ |2⟩ |3⟩
|1⟩ |2⟩ |3⟩

∣∣∣∣∣∣ (Slater determinant)

Figure 3: Antisymmetrisation - making fermions
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11.4 Tripos Q&A

Q1: Describe the spin-statistics governing the behaviour of bosons and fermions.

A1: If we have a composite system of two or more identical particles occupying
different states, then the fact of their indistinguishability puts constraints on the
form of the wavefunction. The particle exchange operator is useful:

P̂12 |ψ(r1, r2)⟩ = |ψ(r2, r1)⟩

Its eigenvalues are either ±1 and QFT tells us that:

λ = (−1)2s

where s is the spin of the particle. So, fermions (spin-1/2) must be antisymmetric
under exchange. Bosons which have integer spins are exchange symmetric.

Q2: (2015 P1 B7) 1. For a system of two identical particles, explain what constraint
is placed on the overall wavefunction by considering the operation of exchanging
the two particles.

2. For a system of two fermions whose wavefunction can be written as the product
of a spatial part and a spin part, explain what are the possible combinations of
exchange symmetries for the spatial and spin parts of the wavefunction.

3. . Explain what is meant by para-hydrogen and ortho-hydrogen.

A2: 1. Wavefunction must be symmetric or antisymmetric under particle exchange,
so |ψ|2 does not change.

2. For fermions, the product of the two part must be overall antisymmetric under
exchange, and hence must be of the form:

• (symmetric space) × (antisymmetric spin)

• (antisymmetric space) × (symmetric spin)

3. Para is spin singlet, s = 0, a single state: 1√
2
(↑↓ − ↓↑)

Ortho is spin triplet, s = 1, with three states: ↑↑, 1√
2
(↑↓ + ↓↑) and ↓↓.
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Q3: Write down the time-dependent Schrödinger equation satisfied by the two-
particle wavefunction Ψ(r1, r2, t) for two non-interacting, distinguishable particles,
each of mass m, moving in some potential V, where r1 and r2 are the positions of
the two particles.

A3:
ℏ2

2m

(
∇2

1Ψ+∇2
2Ψ
)
+ [V (r1) + V (r2)]Ψ = iℏ

∂Ψ

∂t

Q4: Write down the possible two-particle wavefunctions for a fermion with spin 1
2
.

A4: Since its fermions, require overall wavefunction to be antisymmetric under
particle exchange.

Ψ(1, 2, t) = Ψ(1, 2)e−iEt/ℏ

Spatial part:

1.
1√
2
[ϕ1(r1)ϕ2(r2)− ϕ1(r2)ϕ2(r1)] (antisymmetric)

2.
1√
2
[ϕ1(r1)ϕ2(r2) + ϕ1(r2)ϕ2(r1)] (symmetric)

Spin part:
1. |↑⟩1 |↑⟩1 (symmetric)

2. |↓⟩1 |↓⟩2 (symmetric)

3.
1√
2[
|↑⟩1 |↓⟩2 + |↓⟩1 |↑⟩2] (symmetric)

4.
1√
2
[|↑⟩1 |↓⟩2 − |↓⟩1 |↑⟩2] (antisymmetric)

For the overall wavefunction to be antisymmetric. Combine antisymmetric and
symmetric pair from spatial and spin part, and we have 4 such possibilities.

Which states are more likely to have lower energy in the presence of repulsion
forces: spatially antisymmetric state.

Reason: particles are further apart in spatially antisymmetric state, since
they can never be at the same place. Thus the addition of a short range interaction
will raise the energy of the antisymmetric spatial state by less than it would raise
the energy of the symmetric spatial state.
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12 Matrix mechanics

Overlap integrals, level splitting/repulsion, perturbative study.

Amn = ⟨ϕm| Â |ϕn⟩

Â =
∑
mn

Amn |ϕm⟩ ⟨ϕn|

12.1 Two level systems

Consider a double potential well, such as an electron in the vicinity of two close atoms.

V1 is the potential due to one nucleus, and V2 is the potential due to the other.

Figure 4: The two lowest energy states are shown

The two potential wells, when in isolation, would have Hamiltonian Ĥ1 and Ĥ2 respec-
tively:

Ĥ1 |ϕ1⟩ = E1 |ϕ1⟩
Ĥ2 |ϕ2⟩ = E2 |ϕ2⟩

The total potential is the sum of the two potential well:

V̂ = V̂1 + V̂2

For the composite system having only 1 particle:

Ĥ = T̂ + V̂1 + V̂2 and Ĥ |ϕ⟩ = E |ϕ⟩

Ĥ can be written in terms of Ĥ1 and Ĥ2:

Ĥ = Ĥ1 + V̂2 and Ĥ = Ĥ2 + V̂1

Assuming the wave function is the linear superposition of the eigenstates of the two
potential wells:

|ϕ⟩ = c1 |ϕ1⟩+ c2 |ϕ2⟩
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Then find matrix elements of Ĥ:
1. Diagonal terms:

H11 = ⟨ϕ1| Ĥ1 + V̂2 |ϕ1⟩ = E1 + ⟨ϕ1| V̂2 |ϕ1⟩ ≈ E1

Similarly, H22 ≈ E2. Because the wavefunction of well 1 is well-separated from the
potential function of well 2 so the expectation of potential is small.

2. Off-diagonal terms (coupling potentials):

H12 = ⟨ϕ1| Ĥ |ϕ2⟩ = t

H21 = ⟨ϕ2| Ĥ |ϕ1⟩ = t∗

These are called overlap integrals because they describe the ’coupling’ between the
wavefunctions of the two wells.

t has the dimensions of energy and takes the form of a coupling potential. They
appear as off-diagonal elements in the Hamiltonian.

Lastly, solve the eigenvector equation by setting determinant to zero:(
H11 H12

H21 H22

)(
c1
c2

)
= λ

(
c1
c2

)
∣∣∣∣H11 − λ H12

H21 H22 − λ

∣∣∣∣ = ∣∣∣∣E1 − λ t
t∗ E2 − λ

∣∣∣∣ = 0

Solve for λ then find the corresponding eigenvectors.

Words and interpretations

For a pair of identical potential wells,

• The original states interact and form symmetric (lower energy/bonding) and an
antisymmetric states (higher energy/antibonding). The original energy levels
split, the degeneracy is lost, and two new energy levels are formed. This is a
characteristic feature of many interacting physical systems.

• The sharing of electrons to lower the total energy of a system is in essence the
formation of a covalent bond between the two bound systems. For example in
H2.
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For two different potential wells and assuming weak coupling i.e. t≪ E2 − E1,

|t|
E2 − E1

= δ ≪ 1

• The upper energy level shifts up and the lower energy level shifts down. This is
called level repulsion and is a generic outcome when distinct energy eigenstates
are perturbatively coupled to one another.

• |ψ⟩− dominated by |ϕ1⟩ for the energy E1 − ∆. |ψ⟩+ dominated by |ϕ2⟩ for the
energy E2 +∆

∼ End of Notes ∼
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