
Physics B - Classical Mechanics Summary Notes

By Shikang Ni

Write down the Physics, then just do the Math :)

1 Fundamentals of classical dynamics

Momentum:
p⃗ = m⃗̇r

Impulse: ∫
F⃗ dt = ∆P⃗

Force:

F⃗ =
dp⃗

dt
= m

dv⃗

dt
+

dm

dt
v⃗

Conservation law: conservation of momentum in the absence of external forces

Rotational equivalent

Angular momentum:
J⃗ = r⃗ × p⃗ = Iω⃗

Impulse: ∫
τ⃗ dt = ∆J⃗

Torque:
τ⃗ = r⃗ × F⃗ = Iα⃗

Conservation law: conservation of angular momentum in the absence of external torque

Energy

Work done:
dW = F⃗ · d⃗r

Kinetic energy:

T =
1

2
mẋ2

Potential energy:

V =
1

2
kx2

Conservation law: conservation of energy in the absence of dissipative forces
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1.1 Techniques for solving for equation of motion

1. Force method

2. Energy method

E = T + V =
1

2
mẋ2 +

1

2
kx2

dE

dt
= 0 (COE)

3. Lagrangian method
L = T − V

d

dt

(
δL
δq̇i

)
=

δL
δqi

(Euler-Lagrange)

1.2 Many particle systems

COM:
MR⃗COM =

∑
a

mar⃗a

Total external force → motion of COM
Total external torque → net change in J⃗
Work done by external force → change in energy dE

1.3 Zero-momentum frame / COM frame

A frame where P⃗ ′ = 0 i.e. COM is stationary

r⃗ ′ = r⃗ − v⃗t

where v⃗ = P⃗
M

which is the velocity of COM

1.4 Coordinate system

Plane polar coordinates: ˙̂eρ˜ = ϕ̇ ê˜ϕ and ˙̂eϕ˜ = −ϕ̇ ê˜ρ
Useful representation in complex form: ê˜ρ = eiϕ and ê˜ϕ = ieiϕ

r˜ = ρ ê˜ρ
ṙ˜ = ρ̇ ê˜ρ + ρϕ̇ ê˜ϕ

r̈˜ = (ρ̈− ρϕ̇2) ê˜ρ + (2ρ̇ϕ̇+ ρϕ̈) ê˜ϕ = (ρ̈− ρϕ̇2)︸ ︷︷ ︸
radial

ê˜ρ + 1

ρ

d

dt
(ρ2ϕ̇)︸ ︷︷ ︸

tangential

ê˜ϕ
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1.5 Rotating frames

Fictitious forces appear in non-inertial frames such as accelerated frames or rotating
frames. Examples are coriolis force or centrifugal force.

Frame S rotates with angular velocity ω⃗ w.r.t frame S0.

1. Using ˙̂˜ei = ω⃗ × ê˜i (from v⃗ = ω⃗ × r⃗) where i = {x, y, z}

r0˜ = x ê˜x + y ê˜y + z ê˜z
ṙ0˜ = ẋ ê˜x + x ˙̂ex˜ + ... = v˜+ ω˜ × r˜

r̈0˜ = ẍ ê˜x + 2ẋ ˙̂ex˜ + x ¨̂ex˜ ... = a˜+ 2(ω˜ × v˜) + ω˜ × (ω˜ × r˜)
ma˜︸︷︷︸

apparent

= mr̈0˜︸︷︷︸
real

− 2m(ω˜ × v˜)︸ ︷︷ ︸
coriolis force

−mω˜ × (ω˜ × r˜)︸ ︷︷ ︸
centrifugal force

−mR̈

︸ ︷︷ ︸
fictitious force

Coriolis force: appear if body if moving with respect to a rotating frame

• Related to conservation of angular momentum

• Coriolis force:
acor = −2Ω× v

For motion along surface, force is always to the right in the Northern hemi-
sphere, and always to the left in the Southern hemisphere. Just do the cross
product.

Responsible for weather patterns on Earth as well as can be observed from the
Foucault pendulum, which precesses at Ω sinλ due to the Coriolis force.

Centrifugal force: give rise to Earth’s equatorial bulge.

2. Using operator: [
d

dt

]
S0

=

[
d

dt

]
S

+ ω˜×
Expand

[
d2r˜
dt2

]
S0

=

([
d

dt

]
S

+ ω˜×
)([

dr

d̃t

]
S

+ ω˜ × r˜
)
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1.6 Lagrangian Mechanics

Starts with Hamilton’s Principle that the action S =
∫
L(qi, q̇i, t)dt is stationary for small

variations δqi(t) about qi(t).

δS =

∫ t2

t1

∑
i

(
δqi

∂L
∂qi

+ δq̇i
∂L
∂q̇i

)
dt

Integrating by parts:

δS = ...︸︷︷︸
vanish for
fixed end
points

+

∫ t2

t1

∑
i

δqi

[
∂L
∂qi

− d

dt

(
∂L
∂q̇i

)]
dt

For δS = 0 ∀ δqi, we get the Euler-Lagrange equation:

∂L
∂qi

=
d

dt

(
∂L
∂q̇i

)

1.6.1 Conjugate momentum

pi =
∂L
∂q̇i

If the Lagrangian is independent of coordinates q1, then the conjugate momentum p1 is
conserved (a constant).

Symmetries lead to conservation laws (Noether’s Theorem)

1.6.2 Examples

1. Simple harmonic motion

L =
1

2
mẋ2 − 1

2
kx2

2. Orbits in central potential

L =
1

2
m(ṙ2 + r2ϕ̇2)− V (r)

3. Symmetric top

L =
1

2
I1(θ̇

2 + ϕ̇2 sin2 θ) +
1

2
I3(χ̇+ ϕ̇ cos θ)2 −mgh cos θ

4. Ladder problem

5. Double pendulum
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1.7 Hamiltonian Dynamics

Find H(qi, pi, t) that does not depend on velocities.

Defining:

H =
∑
i

piq̇i − L(qi, q̇i, t)

dH =
∑
i

(
q̇idpi + pidq̇i −

∂L
∂qi

dqi −
∂L
∂q̇i

dq̇i

)
− ∂L

∂t
dt

Since ∂L
∂q̇i

= pi and
∂L
∂qi

= ṗim

dH =
∑
i

(q̇idpi − ṗidqi)−
∂L
∂t

dt

H only responds to changes in qi, pi and t, as we wanted.

Comparing with,

dH =
∑
i

(
∂H

∂qi
dqi +

∂H

∂pi
dpi

)
+

∂H

∂t
dt

We can get expressions for q̇i and ṗi.

dH

dt
= −∂L

∂t

If the Lagrangian does not depend on time, the Hamiltonian is conserved.
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1.8 Tripos Q & A

Q1. (2015 Tripos P1 A2) Two people stand diametrically opposite each other on the
edges of a horizontal circular platform of radius a rotating about its axis at angular
speed ω. One throws a ball directly at the other at speed v ≫ aω. By what horizontal
distance will the ball miss the second person?

A1: There is coriolis force.
ac = −2ωv

x =
1

2
at2 =

1

2
(2ωv)

(
2a

v

)2

=
4ωa2

v
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2 Orbits in central force field

Central field: F˜ = −∇U = −dU

dr
ê˜r

Obeys conservation laws/most important equations:

1. Angular momentum conserved as G = r×F = 0 or Lagrangian is independent of ϕ:

J = mr2ϕ̇ = constant

2. Total energy conserved

E = U(r) +
1

2
m(ṙ2 + r2ϕ̇2)

=
1

2
mṙ2 + U(r) +

J2

2mr2︸ ︷︷ ︸
effective potential

Effective potential: by using a constant of the motion, we have removed the ϕ de-
pendence i.e. reduced the degree of freedom in the system by one.

For a general power-law force field: F = −Arn ⇒ U(r) = Arn+1

n+1

2.1 Classifying orbits

Define r0 to be where dUeff

dr
|r0 = 0

1. stable v.s. unstable

d2Ueff

dr2

∣∣
r0
> 0 is stable

2. bound v.s. unbound

E < 0 is bound. E > 0 is unbound

2.2 Nearly-circular orbits (perturbations about r0)

Two ways to find equation of motion: mϵ̈+ U ′′
effϵ = 0:

1. Expand Ueff about r0

Ueff = U0 +
1

2
(r − r0)

2 d2Ueff

dr2

∣∣∣∣
r0

Spot that d2Ueff

dr2
is a ”spring constant”.

2. Energy method
d(Ueff +

1
2
mṙ2)

dt
= 0

3. Expand equation of motion about r0 i.e. r → r0 + δr
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2.3 Kepler’s Laws

Fast derivation of Kepler’s third law:

GMm

r2
=

mv2

r
and v =

2πr

T

GM

r
= v2 =

4π2r2

T 2

⇒ T 2 =
4π2

GM
r3

2.4 Geometry of an ellipse
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2.5 Interested in: inverse square law force (n = −2)

F = −A

r2
, U = −A

r

Gravity: A = GMm
Electric: A = − q1q2

4πϵ0

We can write down J and E and that is enough to know everything about the
system.

Problem solving tip: conserve energy and angular momentum.

Overview of orbit shapes and conditions:

For inverse-square force field for an attractive force,

• All orbits are conic sections with the centre of force at the focus.

• Equation for shape of orbit is of the form:

r =
r0

1 + e cos θ

• For E > 0: orbit is hyperbolic (e > 1)
E = 0: orbit is parabolic (e = 1)
E < 0: orbit is either circular (e = 0) or elliptical (0 < e < 1)

For repulsive field: only hyperbolic orbits are possible.

2.5.1 Derivation of shape and energy of orbit

Write down energy and angular momentum:

E =
1

2
mṙ2 +

J2

2mr2
+ V and J = mr2ϕ̇

Divide by ϕ̇2 = J2

m2r4 and multiply by 2
m

to make coefficient of
(

dr
dϕ

)2
unity. Obtain:

2mE

J2
r4 =

(
dr

dϕ

)2

+ r2 + V (r)
2mr4

J2

Make substitution u = 1/r. Do the algebra.
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Alternatively, using a vectors approach, note that J˜, v̇˜ and ˙̂er˜ are mutually perpendicular.

J = mr2ϕ̇ and v̇ =
1

m

A

r2
and | ˙̂er˜ | = ϕ̇

Shape

J˜ × v̇˜ = −A ˙̂er˜ (by inspection)y integrate (1), dot with r˜
Attractive : r0 = r(1 + e cos(ϕ)) =

J2

mA

J2 = Amr0

Repulsive : r0 = r(e cos(ϕ)− 1) [other branch]

Energy

Ae˜= −(J˜ × v˜+ A ˙̂er˜ ) result of (1)y scalar product with itself, rearrange

e2 − 1 =
2r0E

A

E = − A

2a

2.6 Parabolic and hyperbolic orbits

2.6.1 Parabolic

Parameters: e = 1, E = 0

Figure 1: y2 = 4f(f − x)
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2.6.2 Hyperbolic

Parameters: e > 1, E > 0

where χ is angle of deflection and ϕ∞ = α is the angle of approach from the horizontal.

At infinity, J = mbv∞ and E =
1

2
mv2∞

Key ideas:

1. Angle relationships:

2(α− χ) + χ = π

⇒ α =
1

2
(π + χ)

2. Conserve energy and angular momentum to find relevant parameters.

3. Consider change in momentum to find the following formula:

tan
(χ
2

)
=

A

mbv2∞

Derivation: force acting over a certain time cause change in momentum.

At infinity initially, there is horizontal component to the angular momentum, but at
the closest approach, all the horizontal momentum is gone. It is due to horizontal
forces acting. We can write:

mv∞ cosα =

∫ closest

initial

A

r2
cos θdt

Trick: dt = dθ/θ̇ and θ̇ = J
mr2

. Putting together we have dt = mr2

J
dθ

mv∞ cosα =
Am

J

∫ 0

α

cos θdθ =
A

bv∞
(− sinα)

Finally,
A

mbv2∞
= −cosα

sinα
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4.

cos(α) = −1

e

⇒ tan2(ϕ∞) = e2 − 1 (gradient of asymptote)

2.7 Useful equations

Vis-viva equation:

v2 = GM

(
2

r
− 1

a

)
Virial theorem:

⟨T ⟩ = −⟨E⟩ = −1

2
⟨U⟩

2.8 Two-body problem

Two masses will orbit about their centre of mass.

r1 =
M2

M1 +M2

r

Defining:

1. r˜ = r1˜ − r2˜
2. µ = M1M2

M1+M2
(reduced mass)

All two-body problems can be reduced to a one-body problem in the centre of mass
frame using reduced mass.

We have:

µrω2 =
GM1M2

r2
(force balance)

T =
1

2
µṙ2 (kinetic energy)

J˜ = µr˜× ṙ˜ (angular momentum)
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2.9 Gravity

1. Gravitational potential and field - determines energies and accelerations

ϕ = −GM

R
and |g| = GM

R2

2. Gauss’s Law: ∫
V

g · dA = −4πGMencl.

3. Gravitational tidal field - due to non-uniformity of gravitational field causing a finite
sized object to feel different forces at different points.

T˜ (⃗a) = a⃗ · ∇g˜ = aj
δgi
δxj

(difference in g˜ between 2 locations)

where a⃗ is the change in position. It is a second-order effect.

Derivation of radial tidal acceleration
Due to variation of g in the radial direction, causing a net stretch.

Expand:

g˜A = − GM

(R + a)2
≈ −GM

R2

(
1− 2

a

R
...
)

So the tidal acceleration, T for unit change in radial position is:

Tr =
2GM

R3

Derivation of sideways tidal acceleration
Due to different direction of g at the two ends of the body, causing a net compres-
sion.

Consider a small offset b in the ê˜θ direction, with θ = b
R
.

∆g˜θ = − sin θ
GM

R2
≈ −GM

R2

b

R
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So the tidal acceleration, T for unit change in position in the θ direction is:

Tθ = −GM

R3

(a) Radial stretching and
sideways compression

(b) Stick man is co-rotating with the orbit,
there is contribution from centrifugal force

Co-rotating
Introduces additional centrifugal forces.

fc = maω2

where a is the radius of the body. To keep the same orientation, the ω2 must equal
to the orbital angular frequency.

Application to Earth-Moon system

ϕtidal =

∫ a

0

g˜T,A − g˜T,B dz

Can be used to calculate height of tides.

Frequency of precession:
ωp = Ω− ω

where Ω is the angular speed for circular orbit and ω is the angular frequency of small
perturbation to the orbit.
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Hohmann transfer orbit

• Hohmann transfer orbit is half of the elliptical orbit that touches both the initial
circular orbit and the desired circular orbit. The elliptical orbit has 2a = a1+a2

• Using Virial theorem (E = 1
2
U). Initial energy E1 = −GMm

2a1
and v1 =

√
GM
a1

.

Has to be increased to:

Etransfer = − GMm

a1 + a2

At point 1, boost velocity by ∆v1 to enter elliptical transfer orbit. At point 2,
boost velocity by ∆v2 to enter the bigger circular orbit.

• Energy after boosting:

Etransfer = −GMm

a1
+

1

2
mv2t1 = − GMm

a1 + a2

• We can find vt1

∆v = vt1 − v1 =

√
2GMa2

a1(a2 + a1)
−
√

GM

a1

• Hohmann transfer is the most fuel efficient orbit in the absence of large bodies
nearby.

Radial impulse do not change angular momentum and do not change energy. They
simply change the SHAPE of the orbit E.g. change from elliptical to circular orbit.

Approach to find radius of new circular orbit:
1. Write down conservation of energy and angular momentum at the perihelion and
aphelion.
2. Write down condition for circular orbit in terms of L.
3. Solve for r, radius of circular orbit.

15



3 Rigid Body Dynamics

Angular momentum

J˜ =
∑

r˜× p˜ =
∑

r˜× (r˜× ω˜) = ∑
mr2ω︸ ︷︷ ︸

diagonal terms

−
∑

mr˜(ω˜ · r˜)︸ ︷︷ ︸
off-diagonal terms

= I · ω˜
⇒

Jx
Jy
Jz

 =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz


︸ ︷︷ ︸

symmetrical

ωx

ωy

ωz


with

Ix1x1 =

∫
V

x2
2 + x2

3 ρdV

Ix1x2 = −
∫
V

x1x2ρdV

Moment of inertia tensor can be diagonalised to give the principal moment of inertia
{I1, I2, I3} (eigenvalues) and the principal axes {ê1˜ , ê2˜ , ê3˜}(eigenvectors).Trivially,

J˜ =

I1ω1

I2ω2

I3ω3


Example: Moment of inertia of a cube with length 2a (2012 Tripos P1 A4)

Taking moment of inertia about centre of cube:

Iyy = Izz = Ixx =
M

(2a)3︸ ︷︷ ︸
density

∫ a

−a

∫ a

−a

∫ a

−a

(y2 + z2) dxdydz =
2

3
Ma2

Ixy = − M

(2a)3

∫ a

−a

∫ a

−a

∫ a

−a

xy dxdydz = 0

Icube =
2

3
Ma2

1 0 0
0 1 0
0 0 1


Moment of inertia tensor is rotation invariant/isotropic, the moment of inertia tensor
taken along the body diagonals is equal to Icube.
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Common values of moment of inertia

Kinetic energy

T =
1

2
ω˜ · J˜ =

1

2
ωiIijωj

T =
1

2
J I−1 J

Note: v⃗ = ω × r⃗

Useful theorems

1. Perpendicular axis theorem. For a lamina (flat body):

Ix + Iy = Iz

2. Parallel axis theorem: used to relate moment of inertia off-centre (I ′) to moment of
inertia through centre (I).

I ′ij = Iij +M( δija
2︸︷︷︸

diagonal terms

− aiaj︸︷︷︸
off-diagonal terms

)
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3.1 Problem solving

Always think about energy and momentum. The physics is just:

1. Conservation of energy

2. Conservation of momentum / considering impulse (both linear and angular)
For angular impulse: chosen to be about a particular axis of which its moment of
inertia has to be calculated

3.2 General precession

Note for free precession, F = 0 and G = 0.

Equation of motion:

G˜ =

[
dJ

d̃t

]
S

+ ω˜ × J˜ (rotation operator)

⇒


G1 = I1ω̇1 + (I3 − I2)ω3ω2

G2 = I2ω̇2 + (I1 − I3)ω3ω1

G3 = I3ω̇3 + (I2 − I1)ω2ω1

(Euler’s equation)

(Seriously, Euler’s equation is just equation of motion in a rotating frame uh, nothing
fancy)

Geometrically, precession can be represented by rolling of space cone and body cone
(Poinsot’s)

3.2.1 Body and space frame

For symmetric body with I1 = I2 ̸= I3,

In the body frame, ω˜ precesses about the unique 3-axis at the body frequency, sweeping
out the body cone (θb):

Ωb =
I1 − I3

I1
ω3 =

(
1− I3

I1

)
ω3
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In the space frame (inertial observer frame), ω˜ precesses about J˜ at the space frequency,
sweeping out the space cone (θs):

Ωs =
|J |
I1

3.2.2 Body and space cone (Poinsot’s treatment)

Key idea: can calculate space and body frequency from geometric considerations.

1. For free precession, constant J and T (= 1
2
ω ·J) implies component of ω in the direction

of J remains constant.
2. As the ω vector varies, it keeps its tip in a plane perpendicular to J, called the invariable
plane.
3. The ellipsoid is tangential to the invariable plane at P.
4. Since the instantaneous motion is a rotation about OP, P is instantaneously at rest so
the ellipsoid rolls rather than slides on the invariable plane.

Figure 4: (a) prolate (b) oblate
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Key argument: the body cone rolls without slipping around the space cone.

Ωb sin θb = Ωs sin θs

3.2.3 Coordinates system (Lagrange’s treatment)

ω˜ = ϕ̇ ê˜z + θ̇ ê˜1 + χ̇ ê˜3
Useful relation:

ê˜z = ê˜3 cos θ + ê˜2 sin θ
By projecting the angular velocities onto axis 1, 2 and 3, which are the body axis. We
have:

ω˜ =

ω1

ω2

ω3

 =

 θ̇

ϕ̇ sin θ

χ̇+ ϕ̇ sin θ



J˜ =

J1
J2
J3

 =

 I1θ̇

I1 ϕ̇ sin θ

I3(χ̇+ ϕ̇ sin θ)



Realising that J3 (G3 = 0), Jz (Gz = 0) and total E is constant,

ϕ̇ =
Jz − J3 cos θ

I1 sin
2 θ

(space frequency)

χ̇ =
J3
I3

− ϕ̇ cos θ (body frequency)

if we take J˜ to point along z-axis, we can find the familiar expressions for χ̇ and ϕ̇.
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3.3 Representation in J-space

(a) Conservation of angular momentum (b) Conservation of energy

Conservation of angular momentum:

|J⃗ |2 = J2
1 + J2

2 + J2
3 = constant (sphere)

Conservation of energy:

E =
1

2

(
J2
1

I1
+

J2
2

I2
+

J2
3

I3

)
= constant (ellipsoid)

The intersection of the sphere and ellipsoid tells you where J⃗ could point.

3.3.1 If energy is not conserved → Major Axis Theorem

The ellipsoid would shrink until a point where the smallest ellipsoid would fit into the
sphere.

Figure 7: Major axis theorem

The J⃗ is aligned with the largest moment of inertia, I i.e. the body is spinning about its
major axis.
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3.3.2 Stability of body

If the object is rotating about minor axis, I1, at maximum energy state. It is stable.
(Minor axis theorem)

If the object is rotating about major axis, I3, at minimum energy state. It is stable.
(Major axis theorem)

If the object is rotating about the intermediate axis, I2, there are many directions in which
J⃗ can point while conserving energy. Leads to chaotic tumbling. Unstable.

3.4 Applications

3.4.1 Gyroscope - forced precession

Write down energy:

E =
1

2
I1(θ̇

2 + ϕ̇2 sin2 θ) +
1

2
I3(χ̇+ ϕ̇ cos θ)2 +mgh cos θ

Substitute expressions for χ̇ and ϕ̇, and find out T and Ueff

1. At steady precession, θ is at the equilibrium position (min Ueff) and is constant
i.e.dUeff

dθ
= 0 and seeking physical solutions for ϕ̇ gives the gyroscope condition:

J2
3 ≫ mghI1

2. Consider gyroscope with horizontal axis supported at one end. Taylor expand Ueff

about θ = π
2
+ ϵ → SHM in ϵ → nutation

3.4.2 Spinning disks

1. Rotation about 1-axis only

2. Rotation at Ω about vertical axis + rotation at ωR about the 3-axis

(ω1, 0, 0) = (Ω sin θ, 0,ΩR + Ωcos θ)

So,
ωR = −Ωcos θ
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4 Normal modes

Small oscillations of a system about its equilibrium position (dU
dx

= 0) tend to give a linear
equation of motion that is simple harmonic. The solutions are known as normal modes,
in which all elements oscillate at a single frequency. We can decompose a compli-
cated response into the normal modes, evolve them in time and recombine them using the
principle of superposition.

Normal modes theorem: N normal modes = M masses × D dimensions

4.1 Solving for normal modes

Step 1: Set up equation of motion (the physics)

1. Force balance

2. Euler-Lagrange

Put equation of motion into the form:(
mẍ1

mẍ2

)
=

( )(
x1

x2

)
Substitute trial solution, xk ∝ eiωt:(

x1(t)
x2(t)

)
=

(
X1

X2

)
eiωt

Step 2: Solve matrix (just math)(
? ?
? ?

)
︸ ︷︷ ︸
Det = 0

(
X1

X2

)
=

(
0
0

)

Solve for eigenvalues (mω2) and eigenvectors (shape of the normal modes).

Normal coordinates

mq̈1 = −(mω2
1)q1

mq̈2 = −(mω2
2)q2

Useful graphs to plot

1. X2

X1
against m2

m1

2. ω2 against m2

m1
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4.2 Normal modes generalised

Near equilibrium behaviour:

1. Kinetic energy is a quadratic function of q̇

2. Potential energy is a quadratic function of q

E = U0 +
1

2

∑
ij

q̇iMij q̇j +
1

2

∑
ij

qiKijqj

Setting dE
dt

= 0 gives a very familiar expression [mẍ = −kx]:

Mij q̈j = −Kijqj

where M is the mass matrix (diagonal) and K is the spring constant matrix (sym-
metric).

It is an eigenvalue-eigenvector problem at heart:

(K − ω2M) · q = 0

If there is a forcing term:
(K − ω2M) · q = F˜

Step 1: Write down T and U

Step 2: Find M and K by inspection

Step 3: Solve |K − ω2M | = 0 to find normal modes and characteristic frequencies

Step 4: If there is forcing term, invert the matrix, K − ω2M , to find q˜
4.3 General result

Any general free oscillation can be expressed as a linear superposition of simple normal
modes. Example:

Θ(t) =

θ1
θ2
θ3

 = (A+Bt)

e1

+(C cosω−t+D sinω−t)

e2

+(E cosω+t+F sinω+t)

e3


Given initial & boundary conditions, we can solve for the motion of the body.

4.4 The Physics of normal modes

1. Stability
If all ω2 > 0, the system is stable.
If any ω2 < 0 , growing modes exists (∝ eκt) and the system is unstable.
If ω2 = 0, correspond to rotation and translation of the whole system.

2. Degeneracy

24



5 Elasticity

5.1 Basic definitions

Stress, strain and Young’s modulus E:

τ =
F

A
= Ee

Stress τ has the same dimensions as pressure. Strain e is fractional distortion δl
l
.

Poisson’s ratio: gives the strain in one direction caused by the stress imposed in an
orthogonal direction. For example, stretching in one direction by δl causes compression in
the orthogonal direction by σδl.

Assuming isotropic linear elastic medium, putting everything together gives the master
equation:

E

e1
e2
e3

 =

 1 −σ −σ
−σ 1 −σ
−σ −σ 1

τ1
τ2
τ3


in component form: Ee1 = τ1 − στ2 − στ3

Bulk modulus B
B is the proportionality constant between pressure P and volume strain.

dP = −B
dV

V

Proof: consider medium under isotropic pressure: τ1 = τ2 = τ3 = −P
where δV

V
≈ (1 + e1)(1 + e2)(1 + e3)− 1 ≈ e1 + e2 + e3 to first-order expansion

B =
E

3(1− 2σ)

Shear modulus G

G =
shear stress

shear angle
=

E

2(1 + σ)

25



Shear stress and shear strain

Compression and stretching in perpendicular directions lead to shear stress and strain.
Equivalent to AC-rotation of θ and shearing by angle 2θ.

Consider a small section:

1. Prove that θ = ϵx

tan θ ≈ θ =
∆x/

√
2

a

ϵx =
∆l

l
=

2∆x

2
√
2a

⇒ θ = ϵx

2. Apply master equation (note that τx = −τy = τ):

Eϵx = τx − στy = τ(1 + σ)

G =
shear stress

shear angle
=

τ

2θ
=

E

2(1 + σ)

5.2 Formal matrix representation of stress and strain

Stress: force per unit area transmitted across planes in the medium.

τ =

τxx τxy τxz
τyx τyy τyz
τzx τzy τzz


i.e. τxy is the force/unit area in the x-direction transmitted through the y-plane (plane
perpendicular to y-axis).

The stress tensor is symmetric and can be diagonalised.

26



Strain:

e =

exx exy exz
eyx eyy eyz
ezx ezy ezz


where

eij =
1

2

(
∂Xi

∂xj

+
∂Xj

∂xi

)
In general,

1. Diagonal normal components

Eexx = τxx − στyy − στzz etc...

2. Off-diagonal shear components

τxy = G (2exy)︸ ︷︷ ︸
shear
angle

etc...

3. Matrix representation

τ =

(
B − 2

3
G

)
Tr(e)I + 2Ge

5.3 Elastic Strain Energy

U =
1

2
(τ1e1 + τ2e2 + τ3e3)

U =
1

2

[(
B − 2

3
G

) (
Tr(e)

)2
+ 2GTr

(
e2
)]

Simply, it is just:

U =
1

2
Cϕ

5.4 Problem-solving

1. Integrating strain e(r˜)
∆l =

∫
l

e(r˜) dl
2. Force balance between pressure and stress. Use the correct areas for each of them:

P × area1 = τ × area2
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3. Twisting

Relating shear angle and twist angle, θ =
rϕ

L
− (1)

Consider a cylindrical shell of radius r and thickness dr,

Couple: dG = F · r − (2)

F = area · shear stress = (2πrdr)Gθ − (3)

∴ dG =
2πr3Gϕ

L
dr

G =

∫ a

0

dG

W =

∫ θ0

0

G dϕ

4. Bending
Torque, G = B

W =

∫
ϕ

L
EI dϕ

5. Thin tube - relationship between tangential stress and radial stress.

Consider infinitesimal section of width dr and length l into the page.

Force due to tangential stress = Difference in radial stress

2× (τϕ × l dr) = d(τr × 2rl)

⇒ τϕ =
d

dr
(rτr)
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5.5 Beam bending

Moment of area (related to beam stiffness):

I =

∫
A

y2 dA =

∫
A

y2 dxdy

Calculate I for different directions.

Derivation of bending moment
Consider a beam subjected to bending moment causing it to bend into an arc with radius
of curvature R.

The bending moment is the moment of the longitudinal forces on the element.
First, the strain at distance y from neutral axis is:

exx =
(R + y)θ −Rθ

Rθ
=

y

R

Hence, the total moment across a cross-section of the beam is:

B =

∫
y ×

(
E

y

R

)
︸ ︷︷ ︸
force/area

dA =
E

R

∫
y2dA

B =
EI

R
= EIy′′

where 1
R
= y′′

(1+y′2)3/2
≈ y′′ is radius of curvature. (derived by matching gradient and cur-

vature at a point of a curve to a circle of radius R)

Procedure

1. Draw diagram:

(a) Supported (b) Rigidly-clamped (c) Rigidly-clamped (d) Unsupported
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2. Draw force and bending moment graph + define bending moment:

Plotting the force and bending moment graph:
1) Look from left to right, and the force is the prevailing force.
2) Force is the negative of the gradient of B.
3) End points of bending moment.

F = −dB

dx

Examples:

(a) 2 supported ends

B(x) =

{
−W

2
x, 0 < x < L

2

−W
2
(L− x), 1

2
L < x < L

(b) 2 clamped ends

B(x) =

{
−W

2
x+ 1

8
WL, 0 < x < L

2

−W
2
(L− x) + 1

8
WL, 1

2
L < x < L
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(c) one clamp, one free, weight in middle

B(x) =

{
−Wx+ 1

2
WL, 0 < x < L

2

0, 1
2
L < x < L

3. Boundary conditions (usually taken at x = 0 or x = L/2):

• Unsupported (free): y′′ = y′′′ = 0

• Clamped (cantilever): y = y′ = 0

• Supported (hinged): y = y′′ = 0

• Symmetry about centre: y′(L/2) = 0

4. (Math) Solve for y(x) by integration in:

B(x) = EIy′′

5. Obtain expression for deflection y(x) in terms of x.
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5.6 Reciprocity theorem

Since the elastic constant is in the linear regime and is independent of time. Order of
loading does not matter, the energy has to be the same for the same final configuration.

Since the stored energy when loads are applied at P and Q must be the same whether the
load at Q is applied before or after that at P, by an energy argument:

yPQ = yQP (can be proven)

5.7 Buckling - Euler Strut

B = −Fy(x) −→ y′′ +
F

EI
y = 0 −→ y = A sin

(√
F

EI
x

)
Boundary conditions x = L, y = 0,

FE =
π2EI

L2
(Buckling force)

FE =
π2EI

4L2
(Buckling force)
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5.8 Elastic waves

Equation of motion:

ρ
∂2Xi

∂t2
=

∂τij
∂xj

Tr(e) = ∇ ·X˜
ρ
∂2X˜
∂t2

=

(
B +

1

3
G

)
∇(∇ ·X˜ ) +G∇2X˜

Finding normal modes (wave solutions):
Suppose,

X˜ =

X0

Y0

Z0

 ei(ωt−kx)

Substitute into equation of motion.
Boundary conditions:

1. Free boundary: normal component of stress vanish

n˜ · τ · dS˜ = 0

2. Fixed boundary: normal component of displacement vanish

n˜ ·X˜ = 0

5.9 Application

5.9.1 Normal modes on elastic bar

Assuming the beam is at equilibrium,

Weight per unit length:

W = EIy′′′′

Equation of motion:
ρy′′ = −EIy′′′′

Boundary condition as detailed above.

Look for normal modes:
y(x, t) = y(x)eiωt

Solve:
EIy′′′′ − ω2ρy = 0
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Derivation for W = EIy′′′′

Consider forces on element of length ∆x

1. Balance vertical forces

∆F = −W∆x ⇒ W = −dF

dx

2. Force F produce a couple which is balanced by change in bending moment

∆B = −F∆x ⇒ F = −dB

dx

3. Bending moment
B = EIy′′

4. Combining
W = EIy′′′′

5.10 Tripos Q & A

Q: Why liquid has isotropic pressure?

A: Liquid cannot sustain shear stress and hence will respond continuously to it. Imag-
ine compressing a square on the left/right and tension on the top/bottom. Look at
an inscribed square, those forces actually correspond to shear of the square.

Q: Derive the radial strain er and tangential strain eϕ in a pipe.

A: Elemental analysis:

er =
dr +R′dr − dr

dr
=

∂R

∂r

where R is the radial displacement at radius r.

eϕ =
2π(R + r)− 2πr

2πr
=

R

r
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6 Fluid Dynamics

6.1 Archimedes Principle

The upthrust is equal and opposite to the weight of the fluid it displaced.

Fupthrust = ρgV =

∫
V

ρg dV

6.2 Stresses in liquids and gases

Fluids cannot maintain a shear stress because the molecules move past each other over
some timescale ts. A sudden shear exy produce a stress τxy that rapidly decays. Likewise
for normal strain and strain.

To maintain stress in fluid, it has to be continuously sheared. (Concept of viscosity)

6.3 Equation of motion → Euler’s equation

Consider forces acting on fluid element,

Fi =

(
−∆xi

∂P

∂xi

)
︸ ︷︷ ︸

∆Pi

(∆xj∆xk)︸ ︷︷ ︸
∆A

= −∂P

∂xi

∆V

m

∆V
× acceleration = −∇P

ρ
Dv⃗

Dt
= −∇P + ρg⃗ (Euler’s equation)

Convective derivative

Velocity is a function of space and time, v⃗(x⃗, t).

dv⃗ = dt
∂v

∂t
+
∑
i

dxi
∂v

∂xi

dv⃗ = dt

(
∂v

∂t
+ v⃗ · ∇v⃗

)
D

Dt
=

(
∂

∂t
+ v⃗ · ∇

)
︸ ︷︷ ︸
non-inertial frame
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6.4 Conservation laws for fluids (problem-solving)

Ideal fluid = incompressible (∇ · v = 0) and inviscid (no viscosity, η = 0).

Conserve mass, energy flow rate, volume flow rate, momentum flow rate

6.4.1 Conservation of mass → Continuity equation∫
V

∂ρ

∂t
dV︸ ︷︷ ︸

rate of change of
mass inside V

+

∮
S

ρv⃗ · dS˜︸ ︷︷ ︸
mass flux through

surface S

= 0

⇒
∫
V

(
∂ρ

∂t
+∇ · (ρv⃗)

)
dV = 0

⇒ ∂ρ

∂t
+∇ · (ρv⃗) = 0 (continuity equation)

⇒ ∇ · v⃗ = 0 (incompressible flow)

6.4.2 Conservation of energy flow rate → Bernoulli’s equation

Energy flow rate = A1v1︸︷︷︸
volume
flow rate

( ρ1ϕ1︸︷︷︸
gravitational

(gh)

+
1

2
ρ1v

2
1︸ ︷︷ ︸

kinetic

+ P1︸︷︷︸
WD by
pressure︸ ︷︷ ︸

Bernoulli’s equation

+ u1︸︷︷︸
internal
energy

)

For incompressible flow:

P +
1

2
ρv2 + ρϕg = constant (Bernoulli’s equation)

If the flow is steady, ∂v⃗
∂t

= 0, constant along streamline.

If the flow is steady and irrotational, constant everywhere.

6.4.3 Conservation of volume flow rate

area× velocity is conserved

A1v1 = A2v2

6.4.4 Conservation of momentum flow rate

(mass flow)× (momentum/mass) is conserved

(A1ρ1v1)× v⃗1 = (A2ρ2v2)× v⃗2
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6.5 Visualising fluid flow

Streamline: represents the velocity field. It is tangent to the velocity at any point.

Streakline: connects all points that go through a particular point in space. It is formed
by releasing a dye into a fluid at a particular point, giving an instantaneous snapshot of
the positions of all the fluid particles that have passed a particular point (least useful but
easiest to do experimentally).

6.6 Applications

6.6.1 Flow from water tank

Use Bernoulli’s equation to find outflow velocity:

P0 = P0 − ρgh+
1

2
ρv2

∴ v =
√
2gh

Volume flow rate out is:
Q = ϵvAhole

where ϵ is the efflux coefficient. For simple hole, ϵ = 0.62. For Borda’s mouthpiece,
ϵ = 0.5.

6.6.2 Jet of water hitting obstacle

Conserve volume flow rate and/or momentum flow rate to find thickness of water layer.

6.7 Kelvin’s circulation theorem

states that the circulation around a loop moving with the fluid is constant. If there is no
circulation now, there won’t be circulation later.
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Consider circulation (amount of rotation) around loop C,

K =

∮
C

v⃗ · d⃗l =
∫

ω⃗︸︷︷︸
∇× v⃗ (vorticity)

· dS⃗ (Stoke’s theorem)

DK

Dt
= ... = 0

Implication: vorticity is conserved and moves with the fluid. It cannot be generated in
the bulk of the fluid, but only enter the fluid at the boundaries (via boundary layers).

Steady flow & irrotational flow
Steady flow:

ρ

(
∂v

∂t

)
= 0

P + 1
2
ρv2 + ρϕg is a constant on a streamline (Bernoulli’s principle).

If the flow is steady and irrotational, then P + 1
2
ρv2 + ρϕg is a constant everywhere.

6.8 Potential flow

For irrotational flow, ∇× v⃗ = 0 ⇒ conservative, so v⃗ = ∇ϕ for some scalar field ϕ.
For incompressible flow, ∇ · v⃗ = 0 from continuity equation.

If both are satisfied, the fluid satisfies Laplace’s equation:

∇2ϕ = 0

Techniques:

1. Infinite plate: method of images and Green’s function.

Flow past sphere/cylinder: cylindrical and spherical polar coordinates solutions to
Laplace’s equation

2. Boundary conditions:

At boundary (r = a) : vr =
∂ϕ

∂r
= 0

As r → ∞, v = v0 x̂ ⇒ ϕ = v0 x = v0r cos θ

3. Find velocity field by:
v⃗ = ∇ϕ

4. Apply Bernoulli to find pressure.
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5. Force can be calculated from pressure difference (∆P = P −P0) by integration. Tip:
look at the squared sinusoidal term.

F =

∫
∆P dA

A consequence: two sources attract each other. A source and sink repel.
E.g. bubbles merging.

6.8.1 Vortex solutions

Additional vortex term in solution for cylinder

v⃗ =
κ

2πr
ê˜θ

where κ is the strength of rotating vortex and angular velocity is ω = κ
2πa2

. The velocity
of the fluid near the surface is the same as the velocity of the surface of the cylinder.
It has velocity potential:

Φvortex =
κθ

2π

Add together steady flow and vortex:

Φ = V0 cos(r +
a2

r
) +

κθ

2π

Figure 11: Example: flow past rotating cylinder

Can find vθ at r = a,

vθ =
1

r

∂Φ

∂θ
= −2V0 sin θ +

κ

2πa

Then can find pressure at the surface using Bernoulli and then force on the cylinder.

There is a net vertical force per unit length called the Magnus force:

F˜ = ρV˜ 0 × κ
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Circulation without cylinder - Helmholtz vortex/vortices
Has a core of radius rc, which rotates as a solid body with vorticity:

Ω = ∇× v˜
Note that ωcore = Ω/2.

v˜ =
{

κr
2πr2c

ê˜θ, r < rc
κ

2πr
ê˜θ, r > rc

where κ = πr2cΩ. Analogous to the magnetic field around a thick wire carrying a uniform
current.

Two line vortices of opposite sign: blow each other along at speed:

vD =
κ

2πd

Two line vortex of same sign: circle each other
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6.9 Real fluids

6.9.1 Viscosity

Definition: viscosity is the force per unit area, per unit velocity gradient. Viscosity is
the rate of flow of momentum.

τxy = η
∂vx
∂y

(for shear flow in x-direction)

How it arise: when there is spatial variation of velocity.

(a) Sudden shear produce stress
τxy = G(2exy) that decays over timescale ts

(b) Continuous shearing give rise to concept
of viscosity

Derivation of viscous term:

Viscosity is the proportionality constant between shear stress and rate of shear.

τxy = η︸︷︷︸
dynamics
viscosity

(
2
dexy
dt

)

By definition of shear strain,

2exy =
∂X

∂y
+

∂Y

∂x

Differentiate w.r.t. t,

2
dexy
dt

=
∂vx
∂y

+
∂vy
∂x
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So for the case in the diagram with shear flow between y = 0 and y = d,

τxy = η
∂vx
∂y

Equation of motion

τij = η
deij
dt

= η

(
∂vi
∂xj

+
∂vj
∂xi

)
Stress variation across volume element:

∂τij
∂xj

= η

(
∂2vi

∂xj∂xj

+
∂2vj

∂xi∂xj

)
= η

(
∇2v˜+∇(∇ · v˜))

Additional viscous force term which can be added to Euler equation,

F˜viscous = η
(
∇2v˜+∇(∇ · v˜)) = η∇2v˜

where the second equality is for incompressible fluids.

With the extra viscous term, overall equation of motion* is:

ρ
Dv˜
Dt

= −∇P + ρg˜+ η∇2v˜
Example 1: Viscous shear layer

Steady and uniform (constant cross-section) flow:

0 = −∇P + ρg˜+ η∇2v˜
Vertical component:

dP

dy
= −ρg (1)

Horizontal component:

η
∂2vx
∂y2

= 0 ⇒ vx =
V y

d
(2)

Solve equation (1) and (2), applying no slip boundary condition for equation (2).

Force balance for steady flow: horizontal forces on fluid element are zero, so stresses on
either side of element must balance.

τxy = η
dvx
dy

= η
V

d
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Example 2: Poiseuille flow

1. Draining plate

Force balance: net viscous force on element balance gravity:

(Ady)ρg = dτxy · A

∴ dτxy = −ρgdy

dτxy
dy

= η
d2vx
dy2

= −ρg

Boundary conditions:

(a) At the wall, y = 0, no slip condition (speed of the fluid layer in direct
contact with the boundary is identical to the velocity of this boundary) so
vx = 0.

(b) At the open end, y = d, stress must vanish (no net force on fluid element),
so τ = 0.

Obtain parabolic (poiseuille) flow profile.
Can deduce speed at surface and total volume flow rate per unit length:

Q =

∫ d

0

vxdy
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2. Pipe

Consider fluid element between r and r + dr with length l
Net pressure force (towards +z):

FP = −dP

dz
(l)(2πrdr)

Viscous force on the inside:

Fv = area× τzr = (2πrl) η
dvz
dr

Net viscous force (towards +z):
dFv

dr

∣∣∣dr
Force balance: net viscous force = net pressure force

Boundary conditions: no stress at r = 0 and vz = 0 at r = a

Integrate to obtain expression for vz. Can find total volume flow rate:

Q =

∫ a

0

vz 2πrdr

6.9.2 Reynolds number

NR =
ρvL

η

where v and L are characteristic velocity and length scales.

Turbulent and laminar flow
Laminar flow: viscous forces dominate. Usually with small dimensions, high viscosity, low
velocity and low density.

Boundary condition for surface of solid body = no slip: no radial or tangential velocity.

44



6.10 Additional information

1. Total kinetic energy of fluid:

T =

∫
V

1

2
ρv2 dV

2. Pendulum immersed in fluid: two effects come into play, the buoyancy force re-
duces the weight, and the effective mass increases the resistance to acceleration.
So,

ω′
p =

√
g

l
·
√

mnet gravitational

minertial, effective

∼ End of Notes ∼
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