
Physics B - Electromagnetism Summary Notes

By Shikang Ni

Maxwell’s equations

M1: ∇ ·D = ρfree (Gauss’ Law)

M2: ∇× E = −∂B

∂t
(Faraday’s Law)

M3: ∇ ·B = 0 (Gauss’ Law)

M4: ∇×H = Jfree +
∂D

∂t
(Ampere’s Law)

F = q(E+ v×B) (Lorentz Force Law)

J = σE (Ohm’s Law)

∂ρ

∂t
+∇ · J = 0 (Continuity equation)

where
D = ϵ0ϵrE

H =
B

µ0µr

and
P = ϵ0χE = ϵ0(ϵr − 1)E

M = χmH = (µr − 1)H
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1 Electrostatic field

1.1 Electrostatic force and electric field

F⃗ (r˜) = 1

4πϵ0

q1q2
r2

r̂˜
E⃗(r˜) = 1

4πϵ0

q

r2
r̂˜

F⃗ = qE⃗

1.2 Electric potential and electric field

E = −∇V

V = −
∫

E · dl

Electric potential is path independent.
Electric potential at a point r is given by the integral from r to ∞.

Find E by Gauss’s Law and then find potential by path integration.

1.3 Spatial derivative of E field

Consider line integral of E field around a square loop,

∂Ei

∂xj

=
∂Ej

∂xi

⇒ ∇× E = 0 (M2 in electrostatics)

By Stokes’s Law, line integral of E around any closed loop is zero.∮
E · dl = 0

1.4 Dipole

Electric dipole moment: p = qa

Dipole potential: V (r, θ) =
1

4πϵ0

p · r̂
r2

Dipole field: E(r, θ) = −∇V =
1

4πϵ0

1

r3
[3(p · r̂)r̂ − p]

where

∇ =
∂

∂r
r̂+

1

r

∂

∂θ
θ̂ +

1

r sin θ

∂

∂ϕ
ϕ̂

However, no ϕ̂ term for no ϕ dependence.
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Couple of dipole: G = p× E = qE a sin θ

Potential energy of dipole in uniform field: U = −p · E

Force on dipole in non-uniform field: F = −∇U = ∇(p · E)

1. p tend to align with E

2. Tend to go towards region of stronger field

Derivation

Superposition principle:
E = E1 + E2 ⇒ V = V1 + V2

At large distances r ≫ a,

r1 = r − a

2
cos θ

r2 = r +
a

2
cos θ

V (r1, r2) =
q

4πϵ0r1
− q

4πϵ0r2
Then proceed with Taylor expansion.

1.5 Continuity equation

Using conservation of charge, consider rate of change of charge enclosed and flux of
charge through surface, then divergence theorem:

∂ρ

∂t
+∇ · J = 0

1.6 Gauss’s Law

Apply divergence theorem to M1. Use to find electric field E.∮
S

E · dS =
Qencl.

ϵ0

Need to know for line charge, sheet of charge and coaxial cable.
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1.7 Poisson’s equation and Laplace’s equation

∇2V = − ρ

ϵ0
(Poisson’s equation)

For no charge,
∇2V = 0 (Laplace’s equation)

Mathematical methods to solve Poisson’s and Laplace’s equation.

Uniqueness theorem guarantees that if the solution satisfies the Poisson’s equation
and the boundary conditions, it is THE solution.

Standard guesses to Laplace’s equation

• Cylindrical polar coordinates

ϕ = Ar cos θ +
B cos θ

r

• Spherical polar coordinates

ϕ = Ar cos θ +
B cos θ

r2

1.8 Conducting sphere in uniform E field

Induced a dipole.

1. Write down potential:
V = Vcapacitor + Vdipole

V = −E0 r cos θ +
p cos θ

4πϵ0r2

2. Interesting stuff

• Can find sphere of zero V. Reversing the argument, can find dipole moment of
sphere of radius s:

p = 4πϵ0s
3︸ ︷︷ ︸

polarisability (α)

E0 = αE0

• Can find E field using E = −∇V
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1.9 Method of images

The potential V due to charge density ρ(r) in electrostatics obeys the Poisson’s equa-
tion.

∇2V = − ρ

ϵ0

By the uniqueness theorem, any solution that satisfies this equation in the domain
of interest which also satisfy the Dirichlet or Cauchy boundary conditions is the only
solution. For Neumann condition, the solution is unique up to a constant.

The method of images works with high symmetry systems, where we can replace
the conducting surfaces with mirror charges, such that the potential remains
constant over the surface even when the conductor is removed.

Image will have the opposite charge.

Common procedure:
1. Find V
2. Find E using E = −∇V

1.9.1 Line charge and conducting cylinder

Modelled as equal and opposite line charges, satisfying (as derived in the Maths course):

b =
a2

c

V =
λ

2πϵ0
ln

(
r2
r1

)
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E of individual line charges is found by Gauss’s theorem, V can be found soon after.
The total V is found by summing them.

It works because the sum of potential due to the line charges is constant on the surface
of the cylinder (can be proven). Cylinder is an equipotential surface.

1.10 Capacitance

C =
Q

V

Example: parallel cylinders

Can replace cylinders with line charges at position satisfying a2 = bc where b = 2D−c.
Then, find ratio of r2/r1 on the line joining them.

1.11 Electrostatic energy

Energy to assemble a system of charges, UN

UN =
N∑
j=1

∑
i<j

qiqj
4πϵ0eij

=
1

2

N∑
j=1

∑
i ̸=j

qiqj
4πϵ0eij

Discrete: U =
1

2

N∑
j=1

qjVj

where Vj is the potential at position j when all charges are present apart from the jth

charge itself.

Continuous: U =
1

2

∫
ρ(r)V (r) d3r
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1.11.1 Energy stored in capacitor

Ucapacitor =
1

2
QV =

1

2
CV 2 =

1

2

Q2

C

using discrete UN = 1
2

∑N
j=1 dQj

Q−dQj

C

1.11.2 Energy stored in E field

uE =
1

2
ϵ0ϵ|E|2 = 1

2
D · E

UE =

∫
uE dV

Derivation

1. Consider parallel plate capacitor

|E| = σ

ϵ0
=

Q

Aϵ0
and V = |E|d

U =
1

2
QV =

1

2
ϵ0|E|2︸ ︷︷ ︸
uE

Ad

2.

U =
1

2

∫
d3r ρV =

1

2
ϵ0

∫
d3r (∇ · E)V

Using
∇ · (VE) = (∇ · E)V + E · ∇V

1

2
ϵ0

∫
d3r (∇ · (VE)︸ ︷︷ ︸

= dS · VE

−E · ∇V )

dS ∝ r2, V ∝ 1/r and E ∝ 1/r2. So the term → 0 for large r.

1.12 Virtual work

F dx =
∂Us

∂x
dx+

∂Ud

∂x
dx

dU = dWstored + dWmech

where Us is stored electrostatic energy and Ud is dissipated energy.
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1. Constant Q (isolated plate) → constant E (Gauss’s law). If x is pulled apart,
work is done on system which goes into stored energy → V increase.
Find stored energy Us =

1
2
ϵ0|E|2 × Ax, then equate ∂Us

∂x
dx = Fdx:

F =
Q2

2ϵ0A

2. Constant V/p.d. (connected to external power supply). As x increase, E de-
crease so Q decrease by flowing through the battery. We know V = |E|x = const.

Us =
1

2
ϵ0|E|2Ax =

1

2
ϵ0
V 2

x2
Ax

Find
(
∂Us

∂x
dx

)
which is the change in stored energy as the plates are separated.

We have to consider also the energy dissipated in power supply as charges flow
through it:

E =
Q

Aϵ0
⇒ Q = Eϵ0A =

V

x
ϵ0A

Can find dQ = ∂Q
∂x
dx, then we find the energy dissipated:

∂Ud

∂x
dx = −V dQ

Using the fact that work done is equal to the change in stored energy and the
energy lost, we find an expression for F:

F =
1

2
ϵ0V

2 A

x2

The expression for force whether V is kept constant or Q is kept constant are the
SAME!

3. Charge conductor

F = |E|Q =
Q

2ϵ0A
×Q
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1.13 Isotropic dielectric

When an insulator is placed between the plates of a capacitor, held at a constant
potential difference, the charge on the plates increases. If the insulator completely fills
the space between the plates, the charge increases by a factor ϵr:

Relative permittivity: ϵr = 1 + χ

where χ is susceptibility. An applied E field can cause positive and negative bound
charge to separate, inducing a dipole moment which is proportional to applied E.

In a uniform field and for homogeneous material, charge only appears on the ex-
ternal surfaces due to cancellation of the separated charge within the material.

Figure 1: Polarisation in non-uniform field

Q = ϵ0|E|A︸ ︷︷ ︸
Field w/o
dielectric

+ ϵ0χ|E|A︸ ︷︷ ︸
Additional free charge

to offset
induced bound charge

= ϵ0(1 + χ)|E|A

Dipole moment per unit volume (polarisation): P = np = ϵ0χE

Bound charge density at surface: σ = |P⊥| = P · n̂
Polarisation charge density: ∇ ·P = −ρp

Free charge density: ∇ · [ϵ0E+P︸ ︷︷ ︸
D = ϵ0ϵrE

] = ρtotal − ρp = ρf

Example, capacitance of parallel plate capacitor.

Boundary conditions for inhomogeneous dielectric

1. Using Gauss’s law, and no free charge at boundary.

D1,⊥ = D2,⊥

2. Using the fact that line integral of E around closed loop is zero.

E1,∥ = E2,∥
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Behaviour of field lines at boundary

By imposing continuity of E∥ and D⊥ at the boundary, we obtain:

ϵ1 cot θ1 = ϵ2 cot θ2

Dielectrics in uniform field

Ein =
1

1 + nχ
E0

1. Thin slab perpendicular to field: n = 1
2. Cylinder: n = 1/2
3. Sphere: n = 1/3

Derivation for sphere

Assuming the internal field is uniform. The external field is the original field plus
a dipole field generated by surface polarisation charge on the sphere.

Vin = −Einr cos θ (Einz)

V0 = −E0r cos θ +
κ cos

r2
(E0z + dipole field)

Using E(r) = −∇V in spherical polar coordinates, D = ϵ0ϵrE and imposing bound-
ary conditions, we can find find the Ein.
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1.14 Tripos Q & A

Q1: (2015 Tripos P1 B6) If a constant potential difference V is now applied between
the rod and cylinder, find the change in the equilibrium height of the liquid enclosed.

A1: The equilibrium height will be when the total potential energy is minimized.
If the liquid rises by ∆h, the centre of mass of the excess fluid will rise by ∆h/2.
The mass of the excess fluid is m = ρ · π(b2 − a2)∆h.

Write down total energy of the system:

U =
1

2
CV 2 +

1

2
mg∆h =

1

2
CV 2 +

πρg(b2 − a2)(∆h)2

2

Then, at equilibrium, F = − ∂U
∂(∆h)

= 0 to find ∆h.

Continuity equation

• Charge conservation: the current flux through the surface must be equal to
the rate of change of charges within an arbitrary volume.∮

J · dS = − ∂

∂t

∫
ρdV

By divergence theorem: ∫
∇ · J dV +

∫
∂ρ

∂t
dV = 0

The divergence of a vector field gives the net outflow from the point per unit
volume.

So, we obtain the continuity equation:

∇ · J+
∂ρ

∂t
= 0

•
∇ · J =

∂Jx
∂x

+
∂Jy
∂y

+
∂Jz
∂z
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2 Magnetostatic field

Time invariant current and no net charge.

2.1 Magnetostatic force

Force on current element due to magnetic field:

dF = Idl×B

2.2 Biot-Savart Law

dB =
µ0I

4πr2
dl× r̂

Break down into current elements. Remember B is a vector so things might cancel by
symmetry. Example: for a current loop, the surviving component is the component
along the axis of the loop.

Application: force between two current elements / field on axis of a current loop.

1. On axis of current loop:

Bx = a sinα
µ0I

2R2

2. Axis of solenoid:

By integrating Bx and making relevant substitutions, we can obtain the following:

B =
µ0In

2
(cos θ1 − cos θ2)
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2.3 Magnetic flux

Φ =

∫
S

dS ·B

Features of B field lines:

1. Form closed loops around current

2. No magnetic monopoles So, zero net flux through closed surface (M3):

∇ ·B = 0

2.4 Magnetic dipoles

Dipole moment: m =

∫
S

IdS = IS

Couple: G = m×B

Potential energy: U = −m ·B = −IΦ

Force on dipole: F = −∇U = ∇(m ·B)

Vector potential: Adip =
µ0

4π

m× r̂

r2

Dipole field: Bdip = ∇×A =
µ0

4πr3
[3(m · r̂)r̂ −m]

In vacuum,

Dipole potential: ϕ =
m · r̂
4πr2

Bdip = −µ0∇ϕ

2.5 Magnetic scalar potential

For current-free regions ∇×B = 0,

Magnetic field strength: H =
B

µ0µr

= −∇ϕm

B = −µ0∇ϕm

For magnetic dipole (similar form as electric dipole):

ϕm =
dm · r̂
4πr2

=
IdS · r̂
4πr2

=
IdΩ

4π

where Ω is solid angle with dΩ = dS·r̂
r2

For a macroscopic loop:

ϕm =
IΩ

4π
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2.6 Ampere’s Law

Apply Stoke’s theorem to M4. Use to find magnetic flux B.∮
B · dl = µ0µI∮

H · dl = I =

∫
J · dS

2.7 Magnetic vector potential

Magnetic scalar potential has limited uses and only applies if ∇×B = 0 i.e. current-
free region. Since M2 tells us that B field is divergence-less, ∇ ·B = 0, then B can be
written as a curl of a magnetic vector potential A:

B = ∇×A

since Div of Curl is zero i.e. ∇ · (∇× A) = 0.

However, A is undefined to within the addition of a vector k = kx(x)x̂+ky(y)ŷ+kz(z)ẑ,

B = ∇× (A+ k) = ∇×A

But, ∇ · (A + k) ̸= ∇ · A. The requirement that the curl of A equals B does not
constrain the divergence of A. We solve this by choosing the gauge which is the process
the setting the divergence to some chosen value. Commonly,

∇ ·A = 0

In the presence of current sources, we can write a Poisson’s equation for A.
Starting from M4:

∇×B = µ0J

∇× (∇×A) = µ0J

∇(∇ ·A)−∇2A = µ0J

⇒ ∇2A = −µ0J

In components:
∇2Ax = −µ0Jx , ...

Using Green’s function in 3D:

A = µ0

∫
J(r′)

4π|r− r′|
d3r′

which calculates the magnetic vector potential at a point by summing over all current
sources that contribute to the potential.
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2.8 Magnetic materials

Magnetisation: M =
m

V

mtotal =

∫
M dV

Magnetisation current density: Jm = ∇×M

For uniform magnetisation within object, Jm must reside on the surface:

Surface current density: Js = M× n

2.9 Magnetic field strength

B = µ0( H︸︷︷︸
due to Jfree

+ M︸︷︷︸
due to Jm

)

M = χmH = (µr − 1)H

If χm < 0: diamagnetic, χm > 0: paramagnetic and χm ≫ 0, ferromagnetic.

2.10 Boundary conditions

1. Using Gauss’s law and M3 that B is divergence-less (flux):

B1,⊥ = B2,⊥

2. Using Stoke’s theorem with a closed loop and no free current on the surface:

H1,∥ = H2,∥

If the H/B field approach boundary at an angle, it will ”refract”. Use these boundary
conditions above to derive relevant expressions.
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Boundary value problems

Hin =
1

1 + nχ
H0

1. Thin slab perpendicular to field: n = 1
2. Cylinder: n = 1/2
3. Sphere: n = 1/3

Problem solving for boundary problems:

1. Noting that E∥ and H∥ is continuous means that their ratio must be the same:

E∥,1

H∥,1
=

E∥,2

H∥,2
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Forces between currents

• A current element (dl) is a infinitesimal piece of wire carrying current I.
The vector points in the direction of current flow.

• Force on current element due to B field is:

dF = Idl×B

Consistent with Lorentz force, dF = dq v×B = dq
dt
dl×B = Idl×B.

• Magnetic field produce by current element by Biot Savart Law:

dB =
µ0I

4πr2
dl× r̂

The magnetic field lines circulate around the current element.

• Force between two current elements:

dB2 =
µ0I1
4πR2

dl1 × R̂

dF2 = I2dl2 × dB2 =
µ0I1I2
4πR2

dl2 × (dl1 × R̂)

• Used to define the ampere: the ampere is the current flowing in each of the
parallel wire of infinite length and negligible cross section placed 1m apart in
vacuum that produces a force of 2× 10−7N/m
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3 Electromagnetic Induction

3.1 Faraday’s Law (M2)

Faraday’s law states that the e.m.f. generated in a circuit is proportional to the
rate of change of flux linkage with the circuit. Lenz’s law give the proportionality
constant as -1.

ε = −dΦ

dt

Relationship between Faraday’s Law, Lenz’s law and M3
Flux through loop, ϕ is:

Φ =

∫
S

B · dS

Induced e.m.f. is:

ε =

∮
E · dl

Faraday’s law says: ∮
E · dl = − ∂

∂t

∫
S

B · dS

Using Stoke’s theorem: ∫
S

∇× E · dS =

∫
S

Ḃ · dS

∴ ∇× E = −∂B

∂t
(M3)

Derivation

Assume an elemental path is moving at velocity v in a region of static magnetic field,
charges experience a Lorentz force.

F = q(v×B)

In the rest frame of the charge, this force appears to be due to an electric field:

E = F/q = v×B

Contribution of length element to the e.m.f. is:

dE = E · dl

Integrate around the complete loop. Note:

dx

dt
× dl =

dS

dt
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3.2 Self-inductance

Definition: self-inductance is the ratio of the flux linked by the system to the
current flowing within it.

L =
Φ

I

where units for Φ is Weber (wb) and for L is Henry (H).

Current changing → induce changing B field, whose flux links back to circuit → induce
opposite e.m.f. which create opposite flowing current.

*Procedure to find L

1. Find H, B using Ampere’s Law.
2. Find flux Φ using

∫
dS ·B, surface S.

Useful for wires: Φ = l

∫
B dr

Voltage

E =

∮
∂S

E · dl

Vgap = −
∮

E · dl = dΦ

dt
=

d(LI)

dt

So,

V = L
dI

dt

Compare with capacitor:

I =
dQ

dt
= C

dV

dt
Energy

UL =
1

2
LI2 =

1

2
ΦI (energy stored in B field)

Consider L-R circuit,

V = IR + Lİ

V I = I2R + LIİ

P = I2R +
d

dt

(
1

2
LI2

)

19



Compare with capacitor:

Uc =
1

2
CV 2 (stored energy in E field)

3.2.1 Mutual inductance

Φ2 = M21︸︷︷︸
M21 = M12

I1

Utotal =
1

2
L1I

2
1 +

1

2
L2I

2
2︸ ︷︷ ︸

self-energy

+ I1I2M︸ ︷︷ ︸
interaction energy

Proving that M21 = M12

Suppose initially I1 = I2 = 0 and that I1 is gradually increased, leading to a voltage
across the current source:

V11 = L1
dI1
dt

Energy stored in magnetic field of the inductor is:

U1 =
1

2
L1I

2
1

Now, turn on I2 while keeping I1 fixed at its final value. The additional energy stored
in the system is:

U2 =
1

2
L2I

2
2

At the same time, the increase in I2 induces a voltage across the first coil:

V12 = M12
dI2
dt

Therefore, energy flows into the magnetic field at a rate:

V12I1 = M12
dI2
dt

I1 =
d

dt
(M12I1I2)

The final energy stored in the system when both currents are at their final value is:

U =
1

2
L1I

2
1 +

1

2
L2I

2
2 +M12I1I2

The final energy must be the same regardless of the order in which the current sources
are turned on, meaning the indices are swapped. Hence,

M12 = M21
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3.2.2 Linking L and M

Completing the square for the above expression,

U =
1

2
L1

(
I1 +

M

L1

I2

)2

+
1

2

(
L2 −

M2

L1

)
I22 ≥ 0

The first expression is guaranteed to be non-negative, hence, the second expression
must be non-negative as well. This gives:

L1L2 ≥ M2

⇒ M = k
√

L1L2

where k is a coupling coefficient between 0 and 1.

3.3 Ideal transformer

A transformer consists of two coils being coupled by means of a core of ferromagnetic
material. We assume perfect coupling of flux, wire have zero resistance, linear core and
no hysteresis. The primary coil has a sinusoidal voltage, which induces a voltage in the
secondary coil.

Since the coils are perfectly coupled, the same flux, Φ, pass through both coils. The
linked flux are respectively:

Φ1 = N1Φ and Φ2 = N2Φ

Faraday’s Law:

V1 =
dΦ1

dt
= N1

dΦ

dt

V2 =
dΦ2

dt
= N2

Φ

dt
From this, we obtain the ratio of voltage for an ideal transformer:

V2

V1

=
N2

N1

Uses: step-down transformer in household appliances to transform socket voltage from
230V to 10s of V needed in appliances. Step-up voltage in power lines to reduce power
loss.
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Total flux for circuit 1:
Φ1 = L1I1 −MI2

Φ2 = −L2I2 +MI1

Differentiate w.r.t. time to obtain V.
Using complex exponential forms of V and I: V (t) = V ejωt and I(t) = Iejωt.
Output voltage is constrained by impedance: V2 = Z2I2

Do the math and find an expression for input impedance Z1 using M2 = L1L2 and
L1

L1
=

(
N1

N2

)2

,

Z1 =
jωL1Z2(N1/N2)

2

jωL1 + Z2(N1/N2)2

Figure 2: Equivalent circuit for Z1. Equivalent to jωL1 in parallel with Z2

(
N1

N2

)2

Usually, ωL1 ≫ Z2

(
N1

N2

)2

Load impedance ratio:
Z1

Z2

=

(
N1

N2

)2

3.4 Energy stored in B field

By considering the total energy of a collection of current loops,

U =
1

2

∫
J ·A d3r

After some mathematical manipulation using vector calculus identity, divergence theo-
rem and M4:

uB =
1

2

|B|2

µ0

=
1

2
µ0 |H|2 = 1

2
B ·H

UB =

∫
uB dV
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3.5 Tripos Q & A

Q2: A conducting wire of length L supporting a metal sphere of mass m and
capacitance C is hung from a grounded rigid pivot and made to rotate as a conical
pendulum at angular frequency ω. A uniform magnetic field B oriented vertically
is then applied.

Calculate the charge on the sphere.

A2: Rate of flux cutting:

ε = −∂Φ

∂t
= −ȦB = −1

2
r2ωB

Q = CV = −C · 1
2
(L sin θ)2ωB

To find sin θ, do force balance:

T cos θ = mg and Fc =
mv2

r
= T sin θ +QvB

So,
mg

cos θ
sin θ +QvB =

mv2

L sin θ

Substitute in v = rω = ωL sin θ and expression for Q. After some approximation
and simplification, we can find expression for sin2 θ, which we can happily substitute
back into the initial expression of Q.
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4 Electromagnetic waves

4.1 Wave equation

In free space (no free charge and no conduction current), the Maxwell’s equations are:

∇ · E = 0 (1)

∇ ·B = 0 (2)

∇× E = −Ḃ (3)

∇×B = ϵ0µ0Ė (4)

Derivation of wave equation

1. Take curl of equation (3) and use triple product (curl curl = grad div − div grad)
2. Remove the div term using equation (1)
3. Evaluate curl of B using equation (4)

One obtains the wave equation for E:

∇2E = µ0ϵ0
∂2E

∂t2

Similar derivations can be done for B field.

Speed of light in free space:

c =
1

√
µ0ϵ0

Solution to the wave equation:

E = E0e
i(k·r−ωt) and B = B0e

i(k·r−ωt)

∇ · E = ik · E = 0 ⇒ k · E = 0

∇ ·B = ik ·B = 0 ⇒ k ·B = 0

∇× E = ik× E = iωB ⇒ k× E = ωB

∇×B = ik×B = −iωµ0ϵ0E ⇒ k×B = −ωϵ0µ0E

1. TEM nature of electromagnetic wave and :

⇒ E ⊥ B ⊥ k

2. E, B and k is right-handed (European Broadcasting Kcompany)

3. Ratio of E to B gives speed of wave

kE = ωB ⇒ E

B
= v
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In dielectric, ϵ0 → ϵ0ϵr and µ → µ0µr

Assumptions:
1. Linear ⇒ p ∝ E so D = ϵ0ϵrE
2. Isotropic (same for all directions)
3. Homogeneous (properties uniform throughout)
4. Non-conducting (not metal)

v =
ω

k
=

1
√
µ0µrϵ0ϵr

=
c

√
ϵrµr

=
c

n

where n =
√
ϵrµr =

√
ϵr

Impedance (ratio of E to H)

Z =
E

H
=

√
µ0µr

ϵ0ϵr
= Z0

√
µr

ϵr
=

Z0

n

where Z0 is the impedance of free space, Z0 = 377Ω and µr is commonly unity.

Derivation:
Start from k× E0 = ωB0. Then, kk̂ × E0 = ωµ0H0

H0 =
kE0

ωµ0

=
E0

cµ0

=
E0

Z0

4.2 Poynting vector

Poynting vector is a vector which gives the direction, and energy flux (power flow per
unit area) of an electromagnetic field:

N = E×H

To show that the Poynting vector gives the rate of electromagnetic energy flow per unit
area. Consider,

∇ · (E×H) = H · (∇× E)− E · (∇×H) = H ·
(
−µ0

∂H

∂t

)
− E ·

(
ϵ0
∂E

∂t

)
− E · J

Integrating both sides w.r.t. dV and apply divergence theorem,

−
∮
S

(E×H) · dS =

∫
V


∂

∂t

(
1

2
µ0H ·H

)
︸ ︷︷ ︸
magnetic energy

density

+
∂

∂t

(
1

2
ϵ0E · E

)
︸ ︷︷ ︸
electric energy

density

+ E · J︸︷︷︸
Energy dissipation

by current

 dV
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The last term is because only E field do work.

Other useful expressions:

N =
|E|2

Z

Time averaged Poynting flux:

⟨N⟩ =
∣∣∣∣12Re[E×H∗]

∣∣∣∣
Maximum rate at which energy is sloshing back and forth at a point:∣∣∣∣PA

∣∣∣∣
max sloshing

=

∣∣∣∣12Im[E×H∗]

∣∣∣∣
4.3 Radiation pressure - force exerted by Poynting vector

The radiation pressure R on a surface is the rate of change of momentum per unit area:

R =
N

c

If the surface reflects, the radiation pressure is doubled.

Start from energy density:

u =
|N|
v

=
N
√
ϵ

c

Find energy in given volume:
U = u× V

Finding force:

F = −dU

dx
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4.4 Reflections and transmissions

Figure 3: Parallel-polarised plane wave

1. Reflected
By continuity of E∥,

Eix + Erx = Etx

Ei0 cos θi − Er0 cos θr = Et0 cos θt — (1)

No phase term,

⇒ ωi = ωr = ωt and kix sin θi = krx sin θr = ktx sin θt

From first and second term, ki = kr since same medium, we obtain the reflection
law:

sin θi = sin θr

2. Transmitted
From first and third term, and using k = nω

c
, we obtain Snell’s law:

ni sin θi = nt sin θt

Furthermore, by continuity of H∥ and using E
H

= Z0

n
,

Hi0 +Hr0 = Ht0

n1Ei0 + n1Er0 = n2Et0 — (2)

From equation (1) and (2) considering Ei0 − Er0 and Ei0 + Er0, we can find
expressions for Er0 and Et0 in terms of Ei0,

Er0 =
β − α

β + α
Ei0
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Et0 =
2

β + α
Ei0

where

α =
cos θt
cos θi

β =
sin θi
sin θt

=
n2

n1

Now, playing with the results,

For no reflection, α = β,

Brewster angle: tan θB =
n2

n1

For no transmission,

Critical angle: sin θc =
n2

n1

Fresnel’s relations

When talking about polarisation of plane waves, it is always about the orientation of
the E field,

For parallel-polarised plane wave,

r∥ =
Er

Ei

=
tan(θi − θt)

tan(θi + θt)

t∥ =
Et

Ei

=
2 cos θi

(n2/n1) cos θi + cos θt

For perpendicular-polarised plane wave,

r⊥ = −sin(θi − θt)

sin(θi + θt)

t⊥ =
2 cos θi

cos θi + (n2/n1) cos θt

Power reflection coefficient,

R = |r|2 =
(
n− 1

n+ 1

)2

Can be derived by considering normal incidence and using small angle approximations.
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4.5 Plasma waves

Plasma is a soup of free electrons and positive ions.

Start with:
1. Equation of motion of electron:

me
d2r

dt2
= −e(E+ v×B) ≈ −eE

2. Wave solution of E:
E = E0e

i(kz−ωt)

Solve for r.

3. Relate polarisation to electric field to find expression for χ:

P = np = n(−er) and P = ϵ0χE

⇒ −ner = ϵ0χE

where n is the number density of electrons.

4. Derive the relative permittivity in plasma:

ϵ = 1 + χ = 1−
ω2
p

ω2

where ωp is the plasma frequency,

ω2
p =

Ne2

ϵ0me

Refractive index for plasma:

n =

√
1−

ω2
p

ω2

1. If ω < ωp, refractive index is imaginary i.e. n = iβ, find k using k = nω/c, substitute
into expression for E to find an exponentially decaying evanescent wave.

For example, reflection of low frequency EM waves off ionosphere enables low-frequency
communication.

The magnetic field could also be calculated using H = nE
Z0

2. Can find average and maximum sloshing parts of the Poynting vector.

3. Dispersion relations:

v =
ω

k
=

c

n

vg =
dω

dk
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4.6 Conducting material

Have to use Ohm’s law since there are free currents now,

J = σE

1. From M4:
∇×B = µµ0J+ µ0µϵ0ϵĖ

and using E = E0e
i(k·x−ωt), Obtain,

∇×B = µ0µσE︸ ︷︷ ︸
extra term

+µ0µϵ0ϵ(−iωE)︸ ︷︷ ︸
dielectric

2. Rearranging to a similar form as dielectric, we obtain:

µ0µϵ0

(
ϵ+

iσ

ϵ0ω

)
(−iωE)

which looks like an effective dielectric constant:

ϵ′ = ϵ+
iσ

ϵ0ω
≈ iσ

ϵ0ω

3. Find k using k = ω
c/n

where n =
√
µϵ′ (will have

√
i this sort of thing)

k = (1 + i)

√
σωµ0µ

2
=

1 + i

δ

where the skin depth is defined:

δ =

√
2

σωµ0µ
=

1√
πσµ0f

5. After substituting the expression for k into E,

E = E0e
− z

δ ei(
z
δ
−ωt)

• Amplitude of E field decays by e−1 after distance δ (attenuation).
- The skin depth in metals is usually very small, so EM wave decays very rapidly
once they enter a highly conductive material. EM wave can penetrate metals if
they are thin enough but it will severely attenuated.

• δ ∝ f−1/2, higher frequency waves penetrate shallower. This is why resistance
is high for fast oscillating currents.

• δ ∝ σ−1/2. Greater the conductivity, greater the attenuation, smaller the skin
depth.

• Hy =
√

ϵ0ϵ′

µ0µ
Ex = ... =

√
σ

2ωµµ0
(1 + i)Ex. Can find poynting vector too.
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4.6.1 Skin effect

Consider a wire carrying current I that oscillates at frequency ω. Amplitude of current
decays away from the surface of the wire.

Using J = σE. We obtain an expression for current density as a function of z:

Jx = J0e
− z

δ ei(
z
δ
−ωt)

Amplitude of current density decays away from the surface of the wire. Likewise
for B field:

Resistance of wire at high frequency:

Qualitative explanation: oscillating currents are confined to the surface of the wire. As
the frequency increases, the skin depth gets smaller, and the current is confined to a
smaller and smaller region, hence resistance rises.

1. Find current (will be complex) and then an expression for I2 = ⟨ℜ[I]2⟩:

I =

∫
JxdS ≈ 2πa

∫
Jx(z)dz

2. Power dissipated per unit length, P

dP =
I2R

L
= (JdA)2 ·

(
L

σdA

)
· 1
L

=
J2

σ
dA

3. Note that J2 = ⟨ℜ[Jx]2⟩ = J2
0

2
e−

2z
δ . Integrate to find expression for P.

4. Effective resistance per unit length can be found by:

R =
P

I2
=

1

σ

1

2πa · δ
As though the current flows uniformly in a thin shell of thickness δ. R ∝ σ−1/2.
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5 Guided waves

5.1 Characteristic impedance

Z =
V

I
=

√
L

C
and v =

1√
LC

In an dielectric,

Z ′ =
Z

n
and v =

c

n

Know how to derive C and L for parallel wire, coaxial cable and strip transmission line.

For strip transmission line:

C =
aϵϵ0
d

and L =
µ0d

a

Finding impedance
Consider harmonic wave of the form:

I = I0e
i(ωt−kx) and V = V0e

i(ωt−kx)

Z =
V

I
and v =

ω

k

5.2 Circuit of transmission line

A transmission line can be thought of as a series of inductance with capacitance parallel
across the lines.

Using VL = Lİ and Q = CVC ⇒ I = CV̇C :

voltage across inductor:
∂V

∂x
dx = −Ldx

∂I

∂t
⇒ ∂V

∂x
= −L

∂I

∂t

current across capacitor:
∂I

∂x
dx = −Cdx

∂V

∂t
⇒ ∂I

∂x
= −C

∂V

∂t
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Differentiating and combining,

∂2V

∂x2
= −L

∂

∂t

(
∂I

∂x

)
= LC

∂2V

∂t2

Similarly,

∂2I

∂x2
= LC

∂2I

∂t2

So, voltage and current wave travels along transmission line at speeds of:

wave speed: v =
1√
LC

Assuming the solution is of the form V = V0e
−i(kx−ωt) and I = I0e

−i(kx−ωt):

kV = ωLI ⇒ V

I
=

ωL

k
= Lv

characteristic impedance: Z =
V

I
=

√
L

C

5.3 Power flow on transmission line

Impose continuity conditions:

1. Continuity of voltage: Vi + Vr = Vt

1 + r = t

2. Continuity of current: Ii + Ir = It

1

Z
− r

Z
=

t

Zt
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Reflection and transmission coefficients can be by solving for r and t in the simultaneous
equation:

r =
Zt − Z

Zt + Z

t =
2Zt

Zt + Z

We have Vi = V0e
−ikz & Ii =

Vi

Z
and Vr = rV0e

+ikz & Ir = −Vr

Z
We find an expression

for input impedance,

Zin =
Vi + Vr

Ii + Ir

∣∣∣∣
z=−a

=
eika + re−ika

eika − re−ika
Z

Substituting in the expression for r:

Zin

Z
=

Zt cos ka+ iZ sin ka

Z cos ka+ iZt sin ka

Some example results,
For open circuit, Zt → ∞:

Zin

Z
= −i cot ka

For quarter-wavelength line, a = λ/4

Z2 = ZinZt

Impedance matching

If a transmission line is terminated with a load equal to the characteristic impedance
i.e. impedance is matched, no power will be reflected.

load impedance = transmission line characteristic impedance
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5.4 Wave guides

Plane wave pairs:
k1 = (k sin θ, 0, k cos θ)

k2 = (−k sin θ, 0, k cos θ)

Then,

Ey = E0[e
i(k1·r) − ei(k2·r)]e−iωt

= E0e
i(kz cos θ−ωt)[eikx sin θ − e−ikx sin θ]

= ei(kz cos θ−ωt) × 2i sin(kx sin θ)

Boundary conditions: electric field has no tangential component at x = 0 and x = a.

There is propagating wave in z-direction and standing wave in x-direction.

In z-direction:

Phase velocity: vph =
ω

kg
where kg = k cos θ

⇒ Vph =
c

cos θ

Relationship between phase and group velocity:

vphvgrp = c2

In x-direction, using boundary condition that electric field is zero at plate,

k sin θ = kx =
mπ

a

k2
g = k2 − k2

x = k2 − m2π2

a2
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Key results:

k2
0 =

ω2

c2
= k2

x + k2
y + k2

g

k2
z = k2

g =
ω2

c2
− m2π2

a2
− n2π2

b2

where m,n ≥ 0 but cannot have m = n = 0 at the same time.

waveguide equation: k2
g = k2

0 − k2
c

Also, multiplying by c2 gives:

ω2
g = ω2

0 − ω2
c

For propagating modes, k2
g must be positive which gives a cut-off frequency by equating

k0 = kc. Convert to units of Hz for cutoff frequency.

ω2

c2
=

m2π2

a2
+

n2π2

b2

fc =
ckc
2π

= c

(
m2

4a2
+

n2

4b2

)1/2

5.4.1 Rectangular wave guides

TE: Transverse Electric. Lowest possible mode is TEn0 meaning there is one-half wave-
lengths of E-field in the x direction and no variation in the y-direction. The electric
field in the direction with no charges can terminate on charges in the metal walls (using
∇ · E = ρ

ϵϵ0
).

TM: Transverse Magnetic. Lowest possible mode is TM11. If m=0, n=1 or m=1, n=1.
Magnetic field cannot terminate just terminate at the wall since there is no magnetic
monopole (∇ ·B = 0). Would not satisfy boundary conditions if that’s the case.
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∼ End of Notes ∼
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