
IB Physics Notes: Thermodynamics

shikang Ni

Thermodynamics is like cooking, you get the ingredients and know how
to (rules) combine them together (math) to create delicious dishes.

1 Laws of Thermodynamics

1.1 Conservation of particles, energy and entropy

Very useful rules.

1.2 Zeroth law of thermodynamics (special case of 2nd law)

Thermal equilibrium defined by state of system with temperature as a state variable
marker for thermal equilibrium.

Statement: if system A is in thermal equilibrium with system C, and if system C
is separately in thermal equilibrium with system B, then system A and B will be
in thermal equilibrium. It is an empirical law.

Thermal equilibrium: when two systems are in thermal contact and there is no net
heat flow.

Consequences: imply there must be something about a system that is due to the
state it is in which will determine whether heat flows from it to another. To quantify
this, we introduce a state variable called temperature.

1.2.1 Measuring temperature

Based on Boyle’s law and Charles’s law:

lim
P→0

pV = constant (Boyle’s law),

V100 ◦C − V0 ◦C

V0 ◦C
= constant (Charles’ law)

for all gases, provided pressure is low and not near liquefaction temperature of gas.

Charles’ law: fractional change in volume between two fixed temperatures same for all
gases
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Temperature scales (Celsius scale & Absolute scale)

TCelsius = 100
(pV )T − (pV )mpt

(pV )bpt − (pV )mpt

TKelvin = 273.16
(pV )T

(pV )triple pt

1.3 Equation of state

State variables are quantities that do not depend on history of the system, but on its
configuration at the present. State variables include p, V, T, U and S, but exclude path
dependent quantities like Q and WD. Equation of state relates these path independent
quantities. An important one is the ideal gas equation:

pV = nRT or pV = NKBT

Extra note: singular points in these equations denote phase transitions.

For 1 mole, putting in differential form:

dT =
1

R
(p dV + V dp)

1.4 First law of thermodynamics

States conservation of energy, when heat is taken into account.

dU = dQin + dWon

dU = TdS − pdV

State variables: path independent, only depend on current state.
Mechanical work done (W) or heat transfer (Q): path dependent.

Internal energy

U =
3

2
nRT
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Can be involved with conservation of energy.

Heat is mechanical energy (PE and KE) stored in the internal motions/positions of
the constituent particles in matter.

Work: is done on a system whenever it responds to the change in some external
constraint (’force’).

dWon = −pdV (for gas)

provided pressure is constant, which is possible for slow enough movement of piston.

Other types of work: dW = Fdx︸︷︷︸
extension

= γdA︸︷︷︸
surface tension

= −PdE︸ ︷︷ ︸
Electrostatic energy

= −V dQ︸ ︷︷ ︸
Electrochemical

1.4.1 Heat capacity, C

dQin = dU + pdV

At constant V, all heat go into increasing the internal energy.
At constant p, extra heat must be supplied for gas to push back its surrounding and
expand. So, Cp > CV .

Constant volume, CV

CV =

(
dQ

dT

)
V

=

(
∂U

∂T

)
V

= T

(
∂S

∂T

)
V

CV,m =
degrees of freedom

2
R

Example:
1. Monoatomic ideal gas has 3 translational degrees of freedom. So, CV,m = 3

2
R.

2. Diatomic gas has 3 translational and 2 rotational degrees of freedom. So, CV,m = 5
2
R.

Constant pressure, Cp

Cp =

(
dQ

dT

)
p

Derivation to link Cp and CV

Use:

dQ = dU + pdV =

(
∂U

∂T

)
V︸ ︷︷ ︸

CV

dT +

(
∂U

∂V

)
T

dV + pdV

Then, divide by dT and specify a path with constant p. The LHS is Cp.

Cp = CV +

[(
∂U

∂V

)
T

+ p

](
∂V

∂T

)
p
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For an ideal gas, there is no intermolecular forces, meaning internal energy is purely
kinetic and has no potential energy contribution, so U is independent of volume ⇒
∂U
∂V

= 0.

Alternative derivation
Start from enthalpy H:

H = U + pV ⇒ dH = dU + d(nRT )

CpdT = CV dT + nRdT

⇒ Cp = CV +R

Cp,m = CV,m +R and dQ = CV dT + pdV

Cm is intensive heat capacity. (per mole, per volume, per mass)

1.4.2 Reversibility

A reversible process is one that proceeds in infinitesimal steps from one equilibrium to
another, such that the change in the system is smaller than random fluctuations. The
system cannot ’know’ that this change is not just another random fluctuation.

1.4.3 Isothermal and Adiabatic expansions

Isothermal expansion (T = constant)
Internal energy stays the same, so heat must be supplied equal to the work done.

To be reversible, it needs to be slow: each time a molecule hits the moving (away) wall,
its velocity is, on average, reduced, and the gas cools. To keep temperature constant,
heat must flow in from the walls so the expansion must be very slow for this to happen
reversibly.

pV = constant
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(a) Isotherm (b) Adiabat

Adiabatic expansions (dQ = 0)
Reversible (dS = 0, isentropic), no matter speed of expansion.
No heat flow. Work done converted to internal energy:

dU = −pdV = CV dT

Substitute pdV + V dp = RdT from ideal gas law and noting Cp = CV +R. We obtain:

dp

p
+ γ

dV

V
= 0

with γ =
Cp

CV

PV γ = constant

Using PV = RT, equivalently:

TV γ−1 = constant

T γp1−γ = constant

Real gas expansion
Mean free path of molecules in real gases at r.t.p. ≈ 70nm, so most molecules never
get anywhere near the moving wall. What happens is the molecules bounce off their
neighbours. If the gas is expanding, molecules are, on average, moving away from each
other and behave on average like a wall moving away.

Nugget for thought: for cooling to actually happen, the atom molecules has to hit its
neighbours.

5



1.5 Second law of thermodynamics

Based on irreversibility of natural processes, establishes a new state variable to quantify
irreversible progress, entropy. It is empirical.

The direction of an irreversible process is determined by the states of the system.

Statement: NO process is possible whose only effect is:

1. to transfer heat from a colder to hotter body. (Clausius)
i.e. heat flows from hot to cold unless you do work to push it back.

2. the complete conversion of heat to work. (Kelvin)
i.e. you can’t undo dissipation

1.6 Heat engines

A heat engine is a device that converts thermal energy to work, by moving energy from
hot reservoir to a cold reservoir, extracting a fraction of energy as useful work.

1.6.1 Proof that Clausius’s and Kelvin’s statement are equivalent

1. Suppose that we have an anti-kelvin engine that completely converts heat to work.

Connect it to a Carnot engine that uses its work to pump heat from T1 to T2.
Net effect is the transfer of heat from T1 to T2, violating Clausius’s statement.

2. Suppose we have an anti-clausius engine that brings heat from cold to hot.

Run it in tandem with a Carnot engine that rejects the same amount of heat as
drawn by the anti-clausius engine.
Net effect is the complete conversion of heat to work, violating Kelvin’s statement.
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1.6.2 Carnot engine

Assumption: temperature of reservoirs is unchanged as heat is transferred in and out.

Key points from Carnot:

• work could only be generated if heat flowed from a hot to a cold reservoir

• the greater the temperature difference, the more work you get out of the engine

• the most efficient heat engines must be reversible

Carnot’s theorem:

(1) Statement: Of all the heat engines working between two given temperatures,
none is more efficient than a Carnot engine.

(2) Corollary: All reversible engines have the same efficiency ηCarnot.

Proof by contradiction (1): suppose there exist a super-Carnot engine,

Proof by contradiction (2): suppose there exist a reversible sub-Carnot engine,

Net effect is a Kelvin violator.
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Carnot cycle: a theoretical thermodynamic cycle that consists of 4 reversible pro-
cesses: two isothermal and two adiabatic processes. Basically, it takes heat from the
hot reservoir and reject it into the cold one, producing work in the process.

A → B: isothermal expansion. Absorbs Q2 from hot T2 reservoir.
B → C: adiabatic expansion. Cools to T1.
C → D: isothermal compression. Releases Q1 to cold T1 reservoir.
D → A: adiabatic compression. Warms to T2.

Work done is area enclosed by loop:

W = Q2 −Q1 =

∮
p dV

Efficiency:

η =
useful/net work done

heat absorbed

For all reversible heat engines:
Q1

T1
=
Q2

T2
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Derivations:

Along isotherm,

Q2 =

∫ VB

VA

pdV =

∫ VB

VA

RT2
V

dV = RT2 ln

(
VB
VA

)
Likewise for Q1 = RT1 ln

(
VC

VD

)
.

Along adiabat,

T2V
γ−1
B = T1V

γ−1
C and T2V

γ−1
A = T1V

γ−1
D

⇒ VB
VA

=
VC
VD

Hence,
Q1

T1
=
Q2

T2

Using this result, we can obtain the efficiency of Carnot engine between two
heat reservoirs:

η =
W

Q2

= 1− Q1

Q2

= 1− TC
TH

Refrigerator

η =
Q1

W
=

Q1

Q2 −Q1

=
T1

T2 − T1

Heat pump

η =
Q2

W
=

Q2

Q2 −Q1

=
T2

T2 − T1
> 1

where Q2 is heat dumped to hot reservoir and Q1 is heat extracted from cold reservoir.

1.6.3 Real heat engines

Real heat engines are not reversible.

1. Losses of heat through thermal conduction

2. Friction, turbulence are irreversible processes

3. Design flaws

4. May not operate between fixed temperatures

5. Approximated by ’Air standard’ cycles, where air is taken as working substance
assumed to be ideal gas
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Otto cycle (internal combustion engine)

E → A: intake stroke, drawing fuel + air into cylinder
A → B: compression stroke (adiabatic)
B → C: ignition, combustion of fuel generates heat
C → D: power stroke, adiabatic gas expansion
D → A → E: open exhaust valve and expel remaining gas

Efficiency (can be derived using TV γ−1 = constant):

η = 1− r1−γ

with r = VA

VB
(compression ratio)

Stirling cycle (external combustion engine)

A → B: isothermal expansion of compressed gas in hot cylinder. dQ2,in = dWby > 0
B → C: gas is cooled and move to cool cylinder. Qcooling

C → D: isothermal compression in cold cylinder. dQ1,in = dWby < 0
D → A: gas is heated and move to hot cylinder. Qheating

Efficiency (can be derived):

η =
Q2 +Qcooling +Q1 +Qheating

Q2 +Qheating
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1.7 Entropy

1.7.1 Clausius’ theorem

For any closed cycle, ∮
dQ

T
≤ 0

with equality only for reversible cycle.

Proof using Carnot’s theorem:

Carnot cycle:
Q2

Q1

=
T2
T1

Suppose the engine takes heat from T2 and reject it at T1, we can define a reversible
heat transfer to the system with Qrev,2 = Q2 and Qrev,1 = −Q1, thus:

Qrev,2

T2
= −Qrev,1

T1
⇒ Qrev,2

T2
+
Qrev,1

T1
= 0 or

∮
dQrev

T
dT = 0

For any cycle operating between T1 and T2, Carnot’s theorem say η ≤ ηrev so for a
given heat absorbed Q2, more heat is rejected |Qirrev,1| ≥ |Qrev,1|:

Qirrev,1

T1
≤ Qrev,1

T1
⇒
∮
dQ

T
≤ 0

It is path independent,∮
dQrev

T
=

∫ B

A, path 1

dQrev

T
+

∫ A

B, path 2

dQrev

T
= 0

⇒
∫ B

A, path 1

dQrev

T
=

∫ B

A, path 2

dQrev

T

Hence, dQrev/T must be the derivative of a function of state, that we call entropy S
(JK−1).

dS ≥ dQ

T

with equality for reversible process.

dQrev = TdS

1.7.2 Law of increase of entropy

For an isolated system, dQ = 0. ∑
i

dSi ≥ 0

Total entropy of an isolated system cannot decrease, but remains constant (conserva-
tion of entropy) for reversible change and increase for irreversible ones.
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1.7.3 Temperature

1

T
=

(
∂S

∂Q

)
rev

Temperature is the reciprocal of the rate of entropy change with reversible heat trans-
fer to a system. Lower temperature → higher rate of entropy change with heat transfer.

The condition for thermal equilibrium is that the rate of change of entropy with heat
transfer must be the same for both i.e. for a particular transfer of heat, entropy drop
of heat source must equal entropy increase of heat sink.

1.7.4 Change in entropy

∆S =

∫ Tf

Ti

dQ

T
= C ln

(
Tf
Ti

)

For irreversible process, the entropy change is determined by finding an equivalent set
of reversible steps. Example:

1. Joule expansion → calculate ∆S from equivalent isothermal expansion

2. Heat transfer from hot to cold body → ∆S =
∫
dQ/T

1.8 Master equation

Combining 0th law (T), 1st law (dU = dQ− pdV ) and 2nd law (TdS = dQ), and that a
single component p-V system is defined by its V, U and N.

dU = TdS − p dV + µ dN

where µ =
(
∂U
∂N

)
V,S

(chemical potential)

Rearranging,

dS =
1

T
dU +

p

T
dV − µ

T
dN

Interpretation:

1. 1/T: how fast entropy change when we change the energy

2. p/T: how fast entropy change when we change volume

3. µ/T: how fast entropy change when we change N
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1.9 More entropy

1.9.1 Entropy of ideal gas

Using dU = CV dT = TdS − pdV and pV = nRT :

dS =
CV dT

T
+
nRdV

V

Integrate along (T,V) path,

S = CV lnT + nR lnV + S0(n)

The term nR lnV is not extensive, doubling n and V gives extra term, 2nR ln 2.
Make extensive by S0(n) → nS ′

0 − nR lnn

S = nCV,m lnT + nR lnV + nS ′
0 − nR lnn

S = nCV,m lnT︸ ︷︷ ︸
heat component

+ nR ln

(
V

n

)
︸ ︷︷ ︸

configuration component

+nS ′
0

For 1 mole,

S = CV,m lnT +R lnV + S ′
0

⇒ ∆S = CV,m ln

(
Tf
Ti

)
+R ln

(
Vf
Vi

)
1.9.2 Entropy of mixing

∆S = n1R ln

(
V1 + V2
V1

)
+ n2R ln

(
V1 + V2
V2

)
> 0

Gibbs’ paradox: if the two gases is the same, ∆S should be 0, which contradicts
the above result. The resolution lies in the subtlety of treating distinguishable and
indistinguishable particles differently.

Discontinuity: there is a step change in the expression for entropy when when you
suddenly go from treating the particles as distinguishable to indistinguishable.
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2 Analytical Thermodynamics

Motivation: how a system changes when connected to the outside world. Our primary
interest is in the system.

Assume the surrounding is a reservoir: it is so large that their intensive (independent
of N) variables T, p, µ do not change when heat, volume or particles are transferred to
and from them.

2.1 Definitions

1. Thermally isolated: no heat flow, any change will be adiabatic.

2. Thermal contact: imply thermal equilibrium.

3. Open system: particles and energy can move between the system and its sur-
roundings. Extensive variables of system match those of the surrounding.

4. *Closed system: particles do not flow between the system and its surrounding,
but energy can (fixed N).

5. Isolated system: no energy or particles can flow between the system and its
surroundings.

2.2 Useful Math

Reciprocity theorem (
∂X

∂Z

)
Y

(
∂Y

∂X

)
Z

(
∂Z

∂Y

)
X

= −1

Maxwell’s relations
Derived below

2.3 Thermodynamic potentials

Motivation: S and V are not always the most convenient variables, hence, we want to
derive other functions that contain the same information but in terms of other variables
that will prove more useful in certain circumstances.

Assume fixed N.

Assume only do pV work, means we are not pushing the system around, leaving it to
do where the internal flux takes it to find equilibrium by itself.

Always comes in intensive-extensive pairs (conjugates): µdN / TdS / pdV .
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2.3.1 Internal energy U(S, V )

dU = TdS − pdV

dU =

(
∂U

∂S

)
V

dS +

(
∂U

∂V

)
S

dV

Comparing terms, hence:

T =

(
∂U

∂S

)
V

and p = −
(
∂U

∂V

)
S

U(S, V ) gives complete thermodynamic information about the system and variables.
S and V are the natural variables for U .

At constant V, dU = dQ

At constant S, dU = dW

2.3.2 Enthalpy H(S, p)

H = U + pV

dH = TdS + V dp

dH =

(
∂H

∂S

)
p

dS +

(
∂H

∂p

)
S

dp

Derivation:

dH = dU + pdV + V dp = (TdS − pdV ) + pdV + V dp = TdS + V dp

Uses:

1. dH is the dQ at constant p.

At constant pressure, dQ = dH

Cp =

(
dH

dT

)
p

= T

(
dS

dT

)
p

2. Chemical energetics: enthalpy is the heat given out when a reaction occurs at
constant pressure.

3. Flow processes: H is conserved if no external heat or work input.

∆H = Q+W (energy in)
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Proof:

For steady state and by conservation of energy:

U1 + p1V1 +Q+W = U2 + p2V2

H2 −H1 = ∆H = Q+W

2.3.3 Helmholtz free energy F (T, V )

F = U − TS

dF = −SdT − pdV

dF =

(
∂F

∂T

)
V

dT +

(
∂F

∂V

)
T

dV

Derivation:
dF = (TdS − pdV )− TdS − SdT = −SdT − pdV

Uses:

1. At constant temperature, the maximum amount of energy that is free for a system
to convert to work is dF.

At constant temperature, dF = dWby = pdV (dF is max work obtainable)

2. For constant T and V, relates to total entropy change:

dStot = dSres + dSsys = −dF
T

dF < 0 for irreversible steps.

2.3.4 Gibbs free energy G(T, p)

G = H − TS = U + pV − TS

dG = −SdT + V dp

dG =

(
∂G

∂T

)
p

dT +

(
∂G

∂p

)
T

dp
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Derivation:

dG = (TdS − pdV ) + (pdV + V dp)− (TdS + SdT ) = V dp− SdT

Uses:

1. At constant T and p, dG gives the maximum non-pV work done by the system.

dU = dQ+ dWpV + dWe = dQ− pdV +
∑

Xidai︸ ︷︷ ︸
Non-pV work (on)

dG = dQ− pdV +
∑

Xidai + pdV + V dp− TdS − SdT

For constant T and p, and for max work, dQ = dQrev = TdS

dG =
∑

Xidai = dWe (dG gives max non-pV work)

Significance: pV work is done during changes in volume at a fixed pressure. In
many cases, the pV work is not useful work that can be harnessed, and is lost as
heat. In (electrochemical) reactions (cathode and anode), we are more interested
in the amount of non-pV work which is the work we can actually extract.

2. At constant T and p, relates to total entropy change:

dG = −TdStot = −T (dSrev + dSsys)

where heat loss↔ negative entropy. TdS (= dH = dQ), is essentially heat change.

dG = 0 at equilibrium. (useful for phase equilibrium where both phases are at
the same T and p)

In a reversible change, a system can decrease its entropy dGsys < 0.

3. Flow processes: if the transport process is reversible (∆S = 0), at constant T and
without external work done, G is conserved (∆G = 0).

∆G = −T∆S

4. Chemical potential is the Gibbs free energy per particle. It is the energy that can
be absorbed or released due to a change in the number of particles.

µ =
G

N
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Remembering the 4 thermodynamic potentials

Ingredients:
1. S dependence: add TdS
2. V dependence: add -pdV
3. T dependence: add -SdT
4. p dependence: add Vdp

So,
U(S, V ) ⇒ dU = TdS − pdV

H(S, p) ⇒ dH = Tds+ V dp

F (T, V ) ⇒ dF = −SdT − pdV

G(T, p) ⇒ dG = −SdT + V dp

Also,
H = U + pV

F = U − TS

G = U + pV − TS

2.4 Chemical potential

Isothermal atmosphere
µ is the same at all heights as the particles are in dynamic equilibrium and no work is
being done.

Driving force: (1) Density gradient causing atoms to diffuse upwards. (2) Gravitational
potential gradient makes atom tend to diffuse downwards.

With:

µ =
G

n
=

1

n
(U + pV − TS)

Substituting:
U = nCV,mT + nmRgh

S = nCV,m lnT + nR ln(V/n) + nS ′
0

pV = nRT

Equate chemical potential at different heights:

p = p0e
−mrgh

RT
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Contact potential
Electrons in different materials have different chemical potentials, so when two conduc-
tors are placed in electrical conduct, there will be a net diffusion of electrons from one
with the higher electron chemical potential µ1 to the lower one µ2.

dG = dn(µ1 − µ2) ≤ 0

Flow of electrons sets up a charge imbalance and hence an electrostatic potential gra-
dient called contact potential.

µ2 − µ1 = e(ϕ2 − ϕ1)

2.5 Gibbs Helmholtz equation

U = F + TS = F − T

(
∂F

∂T

)
V

= −T 2

(
∂

∂T

F

T

)
V

Similar expressions can be written for G and H:

G = F + pV

H = F + pV + TS

Rationale: F is the easiest thermodynamics potential to evaluate. It is convenient to
write the other thermodynamics (U, G, H) variable in terms of F.

2.6 Maxwell relations

Example: (
∂2U

∂S∂V

)
V,S

=

(
∂T

∂V

)
S

= −
(
∂p

∂S

)
V

Likewise for H, F and G.

You can invert them when needed as well:(
∂T

∂V

)
p

= −
(
∂p

∂S

)
T

2.7 Applications

2.7.1 Heat capacities

Start with:

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV
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Divide by dT at fixed p, multiply by T, and use Maxwell’s relations to eliminate S,

Cp − CV = T

(
∂p

∂T

)
V

(
∂V

∂T

)
p

Using reciprocity theorem to find an expression for
(
∂p
∂T

)
V
, we obtain:

Cp − CV =
TV β2

p

κT

Isobaric expansivity (βT ): fractional increase in volume per unit change in temper-
ature, at constant pressure.

βT =
1

V

(
∂V

∂T

)
p

Isothermal compressibility (κT ): fractional change in volume per unit change in
pressure, at constant temperature.

κT = − 1

V

(
∂V

∂p

)
T

2.7.2 Compressibility

Adiabatic compressibility (κS): fractional change in volume per unit change in
pressure, at constant entropy.

κS = − 1

V

(
∂V

∂p

)
S

Using reciprocity theorem:
κT
κS

=
Cp

CV

= γ

2.7.3 Joule’s law

Statement: no change of temperature in a free expansion a.k.a Joule expansion.
Proof:

Joule coefficient:

(
∂T

∂V

)
U

= 0 = −
(
∂T

∂U

)
V︸ ︷︷ ︸

1/CV

(
∂U

∂V

)
T

⇒
(
∂U

∂V

)
T

= 0

⇒ U = U(T )

The internal energy of an ideal gas depends on temperature only. The joule coefficient
is a measure of how non-ideal a gas can be. For ideal gas, joule coefficient is zero.
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2.7.4 Elastic wire

dW = Fdx

So,
dU = TdS + Fdx

H = U − Fx

F = U − TS

G = U − Fx− TS

2.7.5 Surface tension

Surface energy
Work done to increase area is:

dW = γ δlδx︸︷︷︸
δA

where γ is surface tension. So,

dU = TdS + γδA

Surface tension and surface energy are not identical because there is an entropy change
when you create more surface. For ∆Suniverse = 0, heat must be exchanged with the
surroundings (isothermal) or the liquid must change temperature (adiabatic) to com-
pensate for the change in entropy due to the creation of more surface.

After some mathematical massaging, one can obtain:

u(T ) =

(
∂U

∂A

)
T

= γ − T
dγ

dT

Laplace pressure The curved surface of a small droplet/bubble produces and increase
in internal pressure:

∆p =
2γ

R
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3 Phase Transitions

Real gases:

1. Finite molecular size: hit the walls sooner and more often, increasing the
pressure if n/V is high.

2. Finite long-range intermolecular attraction: spend longer in each others
vicinity and pull back molecules heading for the walls, reducing collisions with
the wall and speed of hitting wall, reduce pressure.

Theorem of corresponding states:
All fluids have approximately the same compressibility factor, Z, when the pressure
and temperature are expressed in reduced units (as fractions of the the fluid’s critical
temperature and pressure)

Z =
pV

nRT

Boyle’s law:
Virial expansion (in p),

pV = A0 + A1p+ A2p
2 + A3p

3 + ...

At sufficiently low p, Boyle’s law holds well. Could also be expanded in 1/V.

Boyle temperature, TB is the temperature where A1 = 0, at which Boyle’s law is
the most closely obeyed. Physically, the long-range attraction cancels the short-range
repulsion between ’real’ molecules.

3.1 Van der Waal’s equation(
p+ n2 a

V 2

)
(V − nb) = nRT

1. Modified volume - finite molecular size

V → V − b

where b is to account for the finite molecular size. Volume is reduced as there are
regions of space with radius 2r that cannot be occupied.

It can be estimated using a hard sphere model with radius r.
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For one mole,

b =
4

3
π(2r)3 ·

(
1

2
NA

)
where the 1/2 arises due to the consideration of a pair of atoms.

2. Modified pressure - intermolecular forces

p→ p+
a

V 2

where a is to correct for intermolecular forces. Molecules hitting the wall are
slowed down due to attractive forces from molecules in the bulk of the gas. Hence,
slight pressure reduction at the walls.
Note: (p + correction) is experienced pressure with p being measured pressure.

Modelling pressure reduction:
1. rate of molecules hitting wall ∝ ρ
2. number of molecules pulling them back ∝ ρ

⇒ δp ∝ ρ2 ∝ 1

V 2

Van der Waal’s isotherm

A real gas proceeds at constant p from D → A as the gas liquefies, both phases coexist
in equilibrium. Only volume change.

Maxwell area rule: same area below and above the dashed and solid line.

3.1.1 Liquid/gas transition

1. Nucleation sites (e.g. impurities) typically needed to induce phase change (A↔ D).

For very pure/clean substances, can exist in metastable states at regions of −ve slope:
2. A→ B: super-heated liquid
3. D → C: super-cooled vapour. E.g. cloud chamber
4. B → C: unphysical/unstable (+ve slope on p− V diagram)
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3.1.2 Critical point

Critical point is where different phases of the material cannot be distinguished. It is
where unstable behaviour ensues so will not be observed. For example for a gas, it is
a region beyond which pressure increase with increasing volume. It is the horizontal
point of inflection on a p-V plot.(

∂p

∂V

)
T

= 0 and

(
∂2p

∂V 2

)
T

= 0

Van der Waal’s isotherm

(a) inverted parabola of phase segregation (b) Below Tc, the system phase segregates

Critical temperature, Tc
Tc is the highest temperature at which liquid and vapour can coexist.

Critical volume, Vc
Make p the subject in Van der Waal’s. Differentiate wrt V. Eliminate T to find V:

Vc = 3b

Substitute back to also find Tc, pc and a dimensionless quantity Zc =
pcVc

nTc
.

3.2 Liquefaction of gas

Trick: expand a gas from high pressure and above inversion temperature to below the
inversion temperature using Joule-Thomson expansion valve.

Expansion of gas → temperature change.

• Below inversion temperature, the attractive force dominate and the gas cools.

• Above the inversion temperature, weak attractive forces becomes not so important
and high pressure, short range repulsive forces dominate and the gas warms up.

Equivalent to a flow process with no energy input, H is conserved.

∆H = 0
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3.3 Phase transitions

Two phases can coexist with a flux of particles between the two phases. At any given
temperature, there will be some pressure called the vapour pressure where liquid ↔
gas transition are in dynamic equilibrium in a closed system.

Liquid → gas: some molecule in a liquid close to the surface might have sufficient en-
ergy to escape the intermolecular forces of its neighbour, and enter the gas phase.

Gas → liquid: gas molecules may hit the surface and stick.

3.3.1 Phase diagram

T = triple point: all 3 phases coexist
C = critical point

Lines generally have positive slope:
1. Volume generally increase as you go through a phase transition by increasing the
temperature.
2. Le Chaterlier’s principle indicates that as you increase the pressure, the system will
react to reduce its volume, so it will tend to go to the more dense phase, and you need
a higher temperature for it to melt.

3.3.2 Example 1: water
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Key features:
1. S-L boundary has negative slope as water expand on freezing.
2. The L-G boundary terminates at critical point, beyond which there is no distinction
between liquid and vapour. Also, the associated phase transition is second order and
there is no latent heat.
3. At the triple point, all three phases co-exist in equilibrium.

3.3.3 Example 2: tin pest

Tin has 2 allotropic form:

1. White beta tin (normal): stable tetragonal crystal structure and metal.

Beyond T = 13.2◦C, it becomes

2. Grey alpha tin: cubic, diamond structure and a semiconductor. Greater volume.

3.3.4 Clausius-Clapeyron equation (phase transition)

During phase transition, there is entropy change (change of order). For Suniverse to
remain constant, need transfer of heat where latent heat L = T∆S. Accompanied by
volume change ∆V as well.

First-order phase transition (discontinuity in S):

dp

dT
=

∆S

∆V
=

L

T∆V

Note for second order phase transition - discontinuity in T (∂S/∂T ).

Derivation:

1. Using temperature differential
Consider 2 isotherms T and T + δT on p-V diagram, where the temperature
differential is just enough to straddle the phase transition, so a finite amount of
latent heat is needed to achieve an infinitesimal temperature difference.
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Connect them with two adiabats, forming a Carnot cycle with efficiency:

η =
W

Q
=
δT

T

Q is latent heat. W is area of cycle.

δT

T
=
δp

T

∆V

∆S

Taking limit as δT → 0
dp

dT
=

∆S

∆V
=
L/T

∆V

2. Using chemical potential/Gibbs energy
Suppose we have 2 phases, with N1 and N2 particles in each and µ1 and µ2

chemical potential respectively.

G = N1µ1 +N2µ2

At equilibrium,
dG = 0 = dN1µ1 + dN2µ2 (1)

Since N1 +N2 = constant, dN1 + dN2 = 0.

⇒ µ1 = µ2

The chemical potentials for the two phases are equal as you go along the
phase boundaries for a particular change in temperature.

Consider 2 points along the phase boundary and using one mole, G = µ:

dµ1 = dµ2

−S1 dT + V1 dp = −S2 dT + V2 dp (2)

(S2 − S1) dT = (V2 − V1) dp

dp

dT
=

∆S

∆V

Combining (1) and (2) more generally, we get the Gibbs-Duhem equation,

dG =
∑
i

dNi µi = −SdT + V dp
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Integration of Clausius-Clapeyron equation

Example, transition to vapour:

1. Calculate ∆V
∆V ≈ Vvap (for any transition to gas)

Can use ideal gas law if pressure is sufficiently low,

∆V =
RT

p

Hence,
dp

dT
=

L

T∆V
=

Lp

RT 2

2. For small temperature intervals, can approximate L ≈ constant.∫
dp

p
=
L

R

∫
dT

T 2

ln p = − L

RT
+ c

Could also be transition between solid and liquid. Use the more general Clapeyron
equation:

dp

dT
=

∆H

T∆V

where ∆H and ∆V is the molar change in enthalpy and volume.
Boiling point: when vapour pressure = ambient atmospheric pressure.
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3.4 Examples

1. Problem sheet Qn 17: state functions
State variables are path-independent, only depends on initial and final states. So,
can take different paths for the same initial and final states.

1) Enthalpy same:
Cα ∆T = ∆H1 + Cγ ∆T −∆H2

2) Entropy same:

Cα ln
T2
T1

= ∆S1 + Cγ ln
T2
T1

−∆S2

where ∆S1 =
∆H1

T

2. Problem sheet Qn 18: configurations and heat component of entropy

Change in volume: configuration (decrease V, decrease S)

∆Ssys = R ln
Vf
Vi

If Vf < Vi, the decrease in entropy of the system is compensated for by expending
work W which is converted to heat and dissipated into the environment increasing
its entropy.

W = −T∆Ssys

Change in temperature: heat

Important note:

1.
d

dT
=

(
∂

∂T

)
p

+
dp

dT

(
∂

∂p

)
T
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4 Statistical Thermodynamics

4.1 Macro and micro states

2nd law: thermodynamics can be deduced from the properties of the system states
without considering how you get from one state of another. Fundamentally, it is a
result of time reversibility symmetry of the laws of nature.

4.1.1 Quantum states −→ classical states

A ’proper’ microstate is defined by quantum mechanics, and is an eigenfunction of the
time development operator, Ĥ :

Eigenstates of the Hamiltonian: Ψj(r, t) = ψj(r)e
−iωjt

Energy is the expectation value of the time development operator, and is conserved
because the eigenfunctions of this operator, by definition, do not change with time.

If we can approximate the motion of the constituent particles with classical mechanics,
then we can use states that are ’small boxes’ in a 6 dimensional combined x and v
space. The boxes are made so small that no measurable property depends on the box
size.

Principle of equal a priori probability (PEAP)
All microstates are equally likely ⇒ the probability that a system at equilibrium is in
a certain macrostate is proportional to the number of microstates that correspond to
the macrostate.

4.1.2 Counting microstates

Isolated system: the system can move from one microstate to another (flux), whilst
keeping the same energy and no. of particles.

Consider splitting an isolated system (fixed E and fixed N) into 2 sub-systems in
thermal contact. For a particular macrostate in which sub-systems have energy E1 and
E2, there are many different configurations of atoms and energy, Ω1 & Ω2 (degeneracy).

Figure 5: Total number of microstates of whole system: Ω = Ω1 × Ω2

For M boxes (# of energy levels) and N quanta (# of particles), treat as (M-1) walls
and N quanta:

Ω =
(N +M − 1)!

N !(M − 1)!
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The most likely macrostate is the one with the most corresponding microstates i.e.
maximum value of Ω = ΩAΩB.

Thus, is the condition when TA = TB (0th law)

Note: the most likely macrostate may not be the average one.

Consider:
d (ΩA(EA)ΩB(E − EA))

dEA

= 0

After differentiating, Will get:

Ω
′
A

ΩA

=
Ω

′
B

ΩB

⇒ d(lnΩA)

dEA

=
d(lnΩB)

dEB

Hence, the relation between Ω and E must relate to classical thermodynamics concept
of temperature:

β(T ) =
d(lnΩ)

dE

4.1.3 Real systems

Have a myriad of finely spaced energy levels, characterised by:

Density of states: g(E) =
dN

dE

δN = g(E) δE

⇒ Ω(E) = g(E) δE

The spread in energy, δE, is related to the time a system spends in a state by the
time-energy uncertainty principle (∆E∆t ≥ ℏ

2
).

Similar expression for β (temperature function) expressed in terms of a system’s
energy density of states:

β =
d(ln g)

dE
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4.2 Boltzmann distribution - connecting β and T

Boltzmann distribution states that the probability of a state with energy E being
occupied is given by:

P (Ei) =
e
− Ei

kBT

Z

where Z =
∑

i e
−Ei/kBT is the partition function to normalise the Boltzmann dis-

tribution.

4.2.1 Derivation

Total energy is E. The probability that the system will be in an ’excited’ microstate of
energy Es (i.e. energy Es taken out of reservoir) is:

Pr(Es) =
ΩR(E − Es)

ΩR(E)

i.e. how ΩR varies as you take energy out of reservoir. Ground state energy Es = 0 has
relative probability 1.

Given that Es ≪ ER (small compared to energy of reservoir), use Taylor expansion:

lnΩR(ER) = lnΩR(E − Es)

≈ lnΩR(E)− Es
d lnΩR

dE
= lnΩR(E)− Esβ

⇒ Pr(Es) = e−βEs = e
− Es

kBT

To establish a connection between β and T, we need a temperature dependent property
derived using both statistical and classical thermodynamics. Consider kinetic energy
of ideal monoatomic gas:

From classical thermodynamics: KE = 3
2
kBT

From statistical thermodynamics: KE = 3
2β

Hence,

β =
1

kBT
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4.2.2 Understanding β

Applies to a system in contact with a heat reservoir (condition: so big that T remains
unchanged as you take heat out) and gives the chance of that the system is in a par-
ticular microstate relative to the chance that the system is in a ground microstate.

As you transfer heat out of the reservoir, the number of microstates available to the
reservoir drops. The Boltzmann factor measures the drop in the number of states in
the reservoir as you take energy out.

The temperature of the reservoir is defined in terms of the rate at which its acces-
sible microstates changes as heat is transferred out of the reservoir.

The most likely system microstate is the ground state, where all energy is in
the reservoir.

4.2.3 Normalizing Boltzmann distribution

P(microstate r) =
e
− Er

kBT∑
i e

− Ei
kbT

where Z =
∑
i

e−Ei/kBT is the partition function.

1/Z gives probability of system in ground state.

Degeneracy, g, of a macrostate is the number of microstates (Ω) in the macrostate.

P(macrostate q) =
gqe

−Eq/kT∑
i gie

−Ei/kT

Average energy:

⟨E⟩ =
∑
i

Ei × P (Ei)
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Example: isothermal atmosphere

Consider molecule in an ideal gas at temperature T in the presence of gravity. Mi-
crostates are horizontal ’slices’ of uniform infinitesimally small width, δz, all equally
likely:

Can treat one molecule as system and the rest of the atmosphere as the reservoir.

Probability of molecule of mass m being at height z is:

P (z) ∝ e−mgz/kBT

Number density: N(z) = N(0)e−mgz/kBT

Compare with pressure:
p(z) = p0e

−mgz/kBT

4.2.4 Planck formula

Redefining internal energy

Internal energy is found by summing the contribution for all the system microstates:

Usys =
∑
i

piEi

=

∑
Eie

−βEi

Z
=

− ∂
∂β

∑
e−βEi

Z
= − 1

Z

∂Z

∂β
= −d(lnZ)

dβ

Energy of simple harmonic oscillator - Planck formula

Excess energy above ground state energy: En = nℏω:

Z =
∞∑
n=0

e−
nℏω
kT = 1 + e−

ℏω
kT +

(
e−

ℏω
kT

)2
+ ... =

1

1− e−ℏωβ

∂Z

∂β
= − ℏωe−ℏωβ

(1− e−ℏωβ)

∴ U = − 1

Z

∂Z

∂β
=

ℏω
eℏωβ − 1

(Planck formula)
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1. Low temperature (kT ≪ ℏω)

U ≈ ℏωe−ℏωβ

Small chance of being in the first excited state.

2. High temperature (kT ≫ ℏω)
Trick: at hight T convert summation to integral.

U ≈ ℏω
1 + ℏωβ − 1

= kT

We have moved over to classical dynamics where the energy level spacing is too
small to have an effect and equipartition of energy holds, KE = PE = 1

2
kT .

Heat capacity of simple harmonic oscillator

C = N
dU

dT
= N

(
ℏω
kT

)2
keℏω/kT

(eℏω/kT − 1)
2

C → 0 for low T and C → k for high T.

Q: why C → kB at high T?
A: ⇒ kB = 2 × kB

2
, hows that the system has 2 quadratic terms/2 degrees of

freedom.

4.2.5 Equipartition of Energy

Each quadratic coordinate term in the energy contributes 1/2 kT of energy
(provided we can ignore QM meaning the spacing of the energy levels is small
compared to kT)

Examples for which the energy is a quadratic function of u (E = αu2).

u E
x 1/2 kx2

v 1/2 mv2

ω 1/2 Iω2

Proof using Boltzmann distribution:

U =

∑
δNαu2e−αu2β∑
δNe−αu2β

where δN = δu/ϵ is the number of states in the interval u → u + δu. Convert to
integral. Use substitution x = αu2 so dx = 2udu:

U =

∫∞
∞ αu2e−αu2βdu∫∞

∞ e−αu2βdu
= ...integrate by parts... =

1

2
kBT
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The above expression for U works if expression for total energy separates into addition of
separate terms that depend quadratically on a coordinate so that the integral separates.

Example: for 1D SHO, a state is a box of size ϵx and ϵv in x and v spaces respec-
tively. Number of microstates is δxδv/ϵxϵv.

U =

∑
(1
2
kx2 + 1

2
mv2)e−(

1
2
kx2+ 1

2
mv2)/kT δN∑

e−(
1
2
kx2+ 1

2
mv2)/kT δN

=

∫∞
−∞

∫∞
−∞(1

2
kx2 + 1

2
mv2)e−(

1
2
kx2+ 1

2
mv2)/kTdxdv/ϵxϵv∫∞

−∞

∫∞
−∞ e−(

1
2
kx2+ 1

2
mv2)/kTdxdv/ϵxϵv

= ...

=

∫∞
−∞

1
2
kx2e−

1
2
kx2/kTdx∫∞

−∞ e−
1
2
kx2/kTdx

+

∫∞
−∞

1
2
mv2e−

1
2
mv2/kTdx∫∞

−∞ e−
1
2
mv2/kTdx

=
1

2
kT +

1

2
kT

=kT

We know that the mean energy per quadratic degree of freedom is:

U =
1

2β

For 3D ideal gas, with 3 quadratic degrees of freedom E = 1
2
mv2x +

1
2
mv2y +

1
2
mv2z ,

U =
3

2β
=

3

2
kT

Consequences

The notion of KE as a measure of T is irrespective of state ⇒ mean speed and K.E.
same for solids, liquids and gases at the same T.

Even for particles moving in a varying potential energy, at any point, the mean KE,
velocity (and velocity distribution) are the same.

Activated processes
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Activation energy: is the minimum energy required to overcome energy barrier.

Useful in deriving a theory of ’activated processes’ such as chemical reaction/diffusion,
since the rate of barrier crossings depend on the 1) number density at the barrier, and
2) their velocity at the barrier.

4.2.6 Boundary between QM and CM

kBT is the total energy available for the system to distribute among the energy levels.
Energy level spacing v.s. kBT :

1. If they are small (less than kT ): can replace sum as an integral and equipartition
of energy holds. Classical regime.

2. If they are large (equal or greater than kT ), have to consider effects of quantum
mechanics.

Heat capacity of gas

Diatomic gas has 3 translational, 2 rotational, 1 vibrational degrees of freedom.

Transnational and rotational contribute 1/2k per degree of freedom. Vibrational has
both kinetic and spring energies, contribute k per degree of freedom.

Vibration is more localised than rotation which is more localised than translation.
Hence, energy level spacing decrease in this order.

So, heat capacity:

Cm =
3

2
R (low T) =

5

2
R (intermediate T) =

7

2
R (high T)
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Increasing the temperature allows higher modes to be excited (switched on)

For finite level systems (2 level systems),

Low T (T → 0K): perfect order. C ∼ e
− E

kBT → 0.
High T (T → ∞): perfect disorder, all energy levels equally occupied. C → 0.

Temperature is a measure of disorder
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4.3 Deep dive into entropy

Entropy is defined as a concept in classical thermodynamics in terms of reversible heat
transfer i.e. for a system in continuous contact with a reservoir:

dS =
dQreversible

T

4.3.1 New look at internal energy

U =
∑

piEi

dU =
∑

Eidpi︸ ︷︷ ︸
dQ

+
∑

pidEi︸ ︷︷ ︸
dW

= dQ+ dW

For reversible processes,

(a) dQ (b) dW

1. Heat transfer changes the probabilities of occupying the microstates.

2. Work done changes the energies of the microstates.

Example of work
Slow change, morphs from one state to the other.
Fast change, weighted linear combination of all possible new wavefunctions of the new
system.

Consider a monatomic gas in a cubic box of side length L,

k ∝ 1

L
and KE =

ℏ2k2

2m
∝ 1

L2

U = KE ∝ 1

L2
∝ V − 2

3

Compare with T-V relationship for adiabatic expansion, TV γ−1 = const, with γ = Cp

Cv
=

R+Cv

Cv
= 5

3
. So,

U ∝ T ∝ V 1−γ ∝ V − 2
3

It agrees!

Effect of work done on temperature
When an external constraint is changed, the quantum states change in energy. As the
box size decrease, the energy levels becomes wider spaced. Temperature increase as the
whole energy distribution is roughly scaled to larger energies.
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4.3.2 Entropy

For slow change,

dS =

∑
Eidpi
T

and pi =
e−

Ei
kT

Z
⇒ ln pi = − Ei

kT
− lnZ

Substitute: Ei

T
= −k ln pi − k lnZ

dS =−
∑

k ln pidpi − k lnZ
∑

dpi︸ ︷︷ ︸
0

S =−
∑

k

∫
ln pi dpi

=− k
∑

(pi ln pi − pi) + constant

=− k
∑

pi ln pi + constant

So,

SGibbs = −k
∑

pi ln pi

4.3.3 Connecting Ω and S (Boltzmann expression for entropy)

Comparing
dE

T
= d(k lnΩ) and dS =

dQrev

T

Most important entropy formula:

S = kB lnΩ

∆S = kB ln

(
Ωfinal

Ωinitial

)
Linking together with ∆Q = T∆S.

The formula is only valid for an isolated system at equilibrium, where all mi-
crostates have the same probability pi = 1/Ω. Proof:

S = −k
∑

pi ln pi = k
∑ 1

Ωi

lnΩ = k lnΩ

In practice, real systems do not have perfectly degenerate energy states, but have a
permitted uncertainty δE in their energy i.e. Ω = g(E) δE. It is good to write S in
terms of g(E):

S ≈ k ln(g(E))

More properly,

S = −k
∫

ln p(E) g(E) p(E) dE︸ ︷︷ ︸
chance of being
in macrostate

between E to E + dE

= −k⟨ln p(E)⟩ = −k⟨ln p(Eavg)⟩
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Width of g(E)p(E) ∝ 1√
M
. Peaks sharply at Eavg

The larger the system, the more sharply peaked it is.

S = k lnω = k ln g(Eavg) + k ln∆E

where ∆E is the spread in system energy due to random heat transfers to and from the
reservoir.

Boltzmann expression is not strictly extensive, because when two isolated systems are
in contact, energy can flow between them and there will be additional states with the
same total energy but a different distribution of energy:

Ωcombined > Ω1Ω2

4.3.4 Time averaged geometric mean (TAGM) probability

pT =
∏

pnpii = pnTAGM

Taking ln on both sides and cancelling n,

ln pTAGM =
∑

pi ln pi

So,
S = −k ln pTAGM
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1. ln pTAGM ≥ 1
n
(average probability) Can use method of Lagrange multipliers to

prove that the minimum of pTAGM is pAM.

As irreversible change progress towards thermal equilibrium, the microstate
probabilities converge to their mean values and pTAGM is minimised, so the
entropy is maximised.

2. 1/pTAGM tells you the effective number of states involved.

The power of Gibbs entropy is that it handles all the questions of which microstate
to include in the entropy and with what weight. If states are not occupied then
they will not contribute.

3. Monotonic increase in entropy. Proof:

Compare two probabilities, p1 > p2, change in ln pTAGM,

d(pTAGM) = d(p1 ln p1) + d(p2 ln p2)

= (1 + ln p1)dp1 + (1 + ln p2)dp2

=− (1 + ln p1)dp+ (1 + ln p2)dp

= (ln p2 − ln p1)dp < 0

Hence, entropy rises.

4. SGibb is extensive. Depends on quantity of matter. Proof:
Consider two independent subsystems connected to a reservoir,

S = −k
∑
i,j

pifj ln(pifj) =− k
∑
i,j

pifj[ln(pi) + ln(fj)]

=− k
∑
i

pi ln pi − k
∑
j

fj ln fj

=SA + SB

4.4 Measurement

Measurement is an irreversible process. Anything that has a well defined result is
irreversible. Collapse of wavefunction results in dissipation of heat/energy.
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5 3rd Law of Thermodynamics

Statement:

[Nernst] Near absolute zero, all reactions in a system in internal equilibrium take
place with no change in entropy.

dS → 0 as T → 0

[Planck] The entropy of all systems in internal equilibrium is the same at absolute
zero and may be taken as zero .

S = 0 at T = 0

5.1 Motivation for and origin of 3rd Law

Cp =

(
∂Q

∂T

)
p

= T

(
∂S

∂T

)
p

⇒
(
∂S

∂T

)
p

=
Cp

T

S(T ) = S(T = 0) +

∫ T

o

(
∂S

∂T

)
p

dT = S(0) +

∫ T

0

Cp

T
dT

This requires the value of entropy at absolute zero.

Aside: at phase transitions, entropy jumps by discrete amount:

∆S =
L

T

(
heat

temperature

)
• Step 1: we know that ∆S → 0 as T → 0 from ∆G = ∆H − T∆S and that ∆H
and ∆G approach each other asymptotically.

• Step 2: As absolute zero is approached, if the system is in equilibrium (capable
of moving from microstate to microstate), it will all drop into the ground energy
state with Ω = 1. S = −k · 1 ln 1 = 0.
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However, in practice the dropping to ground state cannot be achieved as equilib-
rium can’t be reached at low temperatures. Atomic rearrangements require acti-
vation energy. They would just end up in some higher entropy non-equilibrium
state.

5.2 Consequences

Any quantity with dependence on ∆S goes to zero at absolute zero.

1. All heat capacities to go zero at absolute zero.
Why: at low T, only the first excited state has significant probability of occupation
other than the ground state. Essentially, it becomes a 2-state system.

2. Isobaric thermal expansion coefficient:

βp =
1

V

(
∂V

∂T

)
p

= − 1

V

(
∂S

∂p

)
T

→ 0 (Maxwell’s relations)

3. Clausius-Clapeyron:
dp

dT
=

∆S

∆V
→ 0

5.3 Absolute zero is unattainable

Unattainability of absolute zero:
It is impossible by any procedure, no matter how idealized, to reduce the temper-
ature of any system to zero temperature in a finite number of finite operations.
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5.4 Tripos Q & A

Q1: (2018 P2 A5) A defect in a material produces an electronic spin state which
has energy ϵ. The state may be unoccupied, occupied by a spin up electron, oc-
cupied by a spin down electron or occupied by two electrons. The interaction
energy of two electrons occupying the state is U, which can be positive or negative.
Sketch the occupancy of the level as a function of the electronic chemical potential.

A1: The chemical potential is defined as the energy at which the probability of
occupancy is half.

There are 4 states:
1. Unoccupied E = 0 occupancy = 0
2. One spin up E = ϵ occupancy = 1
3. One spin down E = ϵ occupancy = 1
4. Doubly occupied E = 2ϵ+ U occupancy = 2
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6 Thermodynamics of Radiation

Consider electromagnetic radiation in a cavity, which can be thought of as photon gas.
QM: walls continually emit, absorb and reflect photons. Classical: superposition of
standing EM waves.

Key characteristics:
1. Number (N) of photons not fixed. Wall can freely emit or absorb photons to keep
energy density constant.
2. All photons have same speed.
3. If we expand the cavity at fixed T, the total energy will increase by creating more
photons, not by changing their energy density.

Black-body radiation: A black body is a body that perfectly absorbs radiation
(αλ = 1 for all λ). Black body radiation is the radiation emitted by a black body at a
particular temperature. It obeys Stefan Boltzmann Law.

6.1 Radiation pressure

Derivation

1. Number of photons per unit volume with energy range [ϵ, ϵ+ dϵ] is nϵ dϵ

2. If all molecules are equally likely to be travelling in any direction, the fraction
whose trajectories lie in elemental solid angle is dΩ

4π
.

Fraction of particles between θ to θ + dθ direction:

Fraction =
area of annulus

4πr2

=
2π(r sin θ)rdθ

4πr2

=
1

2
sin θdθ

Hence, number of molecules per unit volume between energy [ϵ, ϵ+ dϵ] travelling
between [θ, θ + dθ] is nϵdϵ · 1

2
sin θdθ.
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3. Hitting the wall: in time dt, photons in volume c cos θ will hit the wall of unit
area.

So, the number of molecules hitting a unit area of wall per unit time is:

dN = c cos θ · nϵdϵ ·
1

2
sin θdθ

On hitting wall, ∆(momentum of single photon) = 2× ϵ
c
cos θ (for perfectly reflecting).

For perfectly absorbing surface, the surface must be radiating the same energy as it
absorbs, so expression still holds.

p =
∆(momentum)

∆t
=

∫ ∞

ϵ=0

∫ π/2

θ=0

2ϵ cos θ

c
· c cos θ · nϵdϵ ·

1

2
sin θ dθ

p =
1

3
u

6.2 Kirchhoff’s Law

Kirchhoff’s Law: states that the ratio eλ
αλ

is a universal function of λ and T.
In other words, ’good absorbers are good emitters’ and ’bad absorbers are bad
emitters’.

αλ (spectral absorptivity): is the fraction of the incident radiation which is
absorbed at wavelength λ.

eλ(λ, T ) (spectral emissive power): is a function of wavelength and tempera-
ture such that eλdλ is the power emitted per unit area by the EM radiation having
wavelengths between λ and λ+ dλ at temperature T.

Derivation

Flux of photons hitting wall (number of photons striking per unit area per unit time):

Φ =

∫
c cos θ · n · 1

2
sin θdθ =

1

4
nc

where n can be nϵdϵ or nλdλ.

Consider power per unit area absorbed and emitted by a surface for an energy interval
dϵ,

Energy hitting surface =
1

4
(uϵ dϵ)c =

1

4
(uλ dλ)c

Power per unit area absorbed =
1

4
(uλdλ) c · αλ

Power per unit area emitted = eλdλ
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At equilibrium, power absorbed and emitted are equal. Equating, we obtain Kirchhoff’s
Law:

eλ
αλ

=
c

4
uλ = eBB

λ

For non-black body, eλ = ϵλ e
BB
λ where ϵλ is the emissivity.

6.3 Stefan-Boltzmann Law

u = AT 4

For power emitted per unit area from a black-body:

P

A
= σT 4

where σ is the Stefan-Boltzmann constant.

Derivation

dU = TdS − pdV ⇒
(
∂U

∂V

)
T

= T

(
∂T

∂V

)
T

− p

⇒ u = T

(
∂p

∂T

)
V︸ ︷︷ ︸

Helmholtz’s
Maxwell

−p

Using p = 1
3
u,

u =
1

3
T

(
∂u

∂T

)
V

− 1

3
u

4u = T
∂u

∂T

4
dT

T
=
du

u

Integrating, we obtain Stefan-Boltzmann Law:

u = AT 4

To relate to emission from black-body, consider energy emitted per unit area per unit
time: ∫

eλdλ =

∫
1

4
uλc dλ =

1

4
u(T )c =

1

4
AcT 4 = σT 4
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6.4 Photon gas

The photons inside the cavity are in thermal equilibrium with the cavity walls, and
form electromagnetic standing waves.

Gibbs free energy per photon/chemical potential (µ) is zero.

Derive from G = U + pV − TS and get s by integrating dq
T
.

Because photons are created on the wall, so do not have to take it from the reservoir.
No entropy hit to reservoir for creating any photons, dN can change with no penalty.
So, chemical potential is zero.

6.5 Density of states

In k-space:

k =
π

L
(nx, ny, nz)

Similar to what is being done in Condensed Matter Physics:

δN = g(k)dk =
2 · 4πk2δk

8
π3

L3

=
V k2

π2
δk

g(k) =
V k2

π2

Then using ϵ = ℏkc,

g(ϵ) = g(k)
dk

dϵ
=

V ϵ2

ℏ3c3π2

Or using k = 2π
λ
,

g(λ) = g(k)
dk

dλ
=

8πV

λ4

Or using c = ω
k
,

g(ω) = g(k)
dk

dω
=
V k2

π2c
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6.6 Ultraviolet Catastrophe

Energy density diverges as λ→ 0,

uλ =
du

dλ
=

kBT

V

dN

dλ
=
kBT

V
· g(λ) (Rayleign-Jeans Law)

6.7 Planck’s Law (revisited)

To resolve the ultraviolet catastrophe, Planck proposed that energy was transferred in
quanta of ℏω, the mean energy per mode is the same as that for the simple harmonic
oscillator:

Ū = − 1

Z

dZ

dβ
=

ℏω
eℏωβ − 1

g(ω) = g(ϵ)
dϵ

dω
=
V ω2

c3π2

Energy density u(ω, T ) dω is the energy per unit volume between ω and ω+ dω, this is
the Planck black-body distribution:

u(ω, T ) =
g(ω) · Ū

V
=

ℏω3

π2c3
(
e

ℏω
kBT − 1

)
Total energy density is obtained by integration w.r.t. ω. Use substitution x = ℏωβ:

u(T ) =
ℏ
π2c3

∫ ∞

0

ω3

eℏωβ − 1
dω

=
ℏ
π2c3

(
kBT

ℏ

)4 ∫ ∞

0

x3dx

ex − 1
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⇒ u(T ) =
k4Bπ

2

15ℏ3c3
T 4 ∝ T 4 (Stefan-Boltzmann Law)

6.8 Wien’s Displacement Law

Writing the Planck distribution in terms of wavelength, we get the Wien’s Distribu-
tion Law:

u(λ, T ) =
f(λT )

λ5

Differentiating w.r.t. λ, obtain the Wien’s Displacement Law:

λmaxT = constant

Peak wavelength of black-body radiation goes inversely with temperature.
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7 Kinetic Gas Theory

Assumptions:

1. Dilute monoatomic gas (size of particle ≪ average distance between them)

2. Non-interacting (no potential energy), neglect rotational and internal vibration
contributions to total energy. The only energy present is the kinetic energy.

1

2
mv2 =

1

2
mv2x +

1

2
mv2y +

1

2
mv2z

3. Particles only exchange energy during collisions. Every particle behaves as a small
system connected to heat reservoir at temperature T, where the heat reservoir is
all other particles of the gas. So, we can say that the probability that a particle
is in a given microstate is given by the Boltzmann factor.

7.1 Maxwell Boltzmann Distribution

Gives the distribution of speeds in an ideal gas:

f(v) ∝ v2e−mv2/2kBT

7.1.1 1D Velocity Distribution

δPr = e−
1
2
mv2x/kBT︸ ︷︷ ︸

Boltzmann factor

· δvx/ϵv︸ ︷︷ ︸
number of states
in the interval

∝ f1D(vx)δvx

where ϵv is the velocity state width.

⇒ f1D(vx) ∝ e−
1
2
mv2x/kBT

With a probability distribution function, it is natural to use it to find expectation values
of vx and v2x:

⟨vx⟩ =
∫ ∞

−∞
vxf1D(vx)dvx = 0 (even function)

Instead,

⟨|vx|⟩ = 2

∫ ∞

0

... =

√
2kBT

πm

and

⟨v2x⟩ =
kBT

m

Since 1
2
mv2 = 1

2
kBT (equipartition theory).
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7.1.2 3D Velocity Distribution

The three coordinates are independent of each other.

f3D(v)dv = f1D(vx)dvx · f1D(vy)dvy · f1D(vz)dvz
= Ae−mv2/2kBTdvxdvydvz

It is a 3D Gaussian centred at ṽ = (0, 0, 0)

7.1.3 Speed distribution

Speed is a shell in v-space. The number of speed states is proportional to v2.

f(v) ∝ v2 e−mv2/2kBT︸ ︷︷ ︸
Boltzmann factor

It can be normalised by integrating from 0 to ∞.
You can also use it to find ⟨v⟩, ⟨v2⟩ and vmax.

Picture to remember

Key points:

1. Relative position of those speeds. Mean speed is in the middle.

2. If you need ⟨v⟩, can just use the vrms since it is easier to find, but remember the
% diff between them.
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7.2 Pressure

7.2.1 Quick derivation

⟨force on wall⟩ = impulse× collision rate

Impulse = 2mux

Collision rate =
1

2
Aux(N/V )

where factor of 1/2 is because half the molecules within a the particular volume will be
moving towards the wall.

⟨F ⟩ = mu2x · A
N

V

⟨p⟩ = mu2x
N

V

with u2x = 1
3
ū2,

⇒ pV =
1

3
Nmū2 = nRT (ideal gas equation)

For monoatomic gas, the internal energy is stored as translational kinetic energy:

U =
1

2
mū2 ·N =

3

2
nRT

7.2.2 More formal derivation

dN is the number of particles hitting a unit area of wall in unit time and having speeds
between v and v + dv travelling at angles θ and θ + dθ:

dN = v cos θ · nf(v)dv · 1
2
sin θdθ

p = (momentum change)× dN

p =

∫ ∞

0

∫ π
2

0

(2mv cos θ) ·
(
v cos θ · nf(v)dv · 1

2
sin θdθ

)
= ...

p =
1

3
mn⟨v2⟩

From 1
2
m⟨v2⟩ = 3

2
kBT , we can obtain:

Ideal gas equation: pV = NkBT or p = nkBT
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7.2.3 Dalton’s Law

In mixtures of gases, the total pressure is given by sum of pressure caused by separate
components.

p =
∑
i

pi = kBT
∑
i

ni

where pi is the partial pressure of the ith species and ni is the number density of the
ith species.

7.3 Effusion and flux

Effusion: a process by which a gas escapes from a hole so small that a molecule or
atom can pass without colliding with another.

rate of effusion ∝ nAvrms ∝ nA

√
T

m

Flux: number of molecules per unit area per second.

Φ =
number of molecules

area× time

Φ =

∫ ∞

0

∫ π
2

0

v cos θ · nf(v)dv · 1
2
sin θdθ =

1

4
n⟨v⟩

Also using p = nkBT and expression for average speed ⟨v⟩ =
√

8kBt
πm

,

Φ =
p√

2πmkBT

Effusion rate
Effusion rate = Φ× A

which counts the number of molecules hitting a hole of cross-sectional area A.

Note: Effusing molecules do not have Maxwellian speed distribution.

dN = Av cos θdt · nf(v)dv · 1
2
sin θdθ

where f(v) ∝ v2e−mv2/2kBT

Thus, the distribution of molecules effusing through a hole is proportional to:

v3 e−mv2/2kBT
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7.3.1 Graham’s law

At equal pressure, the effusion speed of different gases is inverse proportional to the
square root of their densities.
Used to separate isotopes in gas.

7.3.2 Measuring vapour pressure

The effusion rate at equilibrium is:

ΦA =
pA√

2πmkBT

Measure rate of change of mass:

dM

dt
= −mΦA

which can be rearranged to obtain an expression for p.

7.4 Mean free path

λ = ⟨v⟩τ =
⟨v⟩

nσ⟨vr⟩
=

1√
2nσ

=
kBT√
2pσ

where ⟨vr⟩ is the mean relative speed of the molecules in the gas. The last equality
is obtained via ideal gas law, and ⟨vr⟩ =

√
2⟨v⟩.

Quick derivation:
A volume of diameter d = 2a defines a cylinder of volume v = πd2λ,

pV = NkBT ⇒ pNπd2λ = NkBT

λ =
kBT

πpd2

Factor of
√
2 → π.
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7.4.1 Ingredient 1: mean collision time

Consider a freeze frame which only one particle is moving at speed v. If the particle
has collision cross-section, σ, then in time δt, it will sweep out volume of σvδt . If
another molecule happen to lie inside this volume, there will be a collision.

probability of hitting a molecule = nσv δt

Let P (t) be probability that a molecule survives without colliding up to a time t.

P (t+ δt) = P (t) +
dP

dt
δt

So probability that molecule survives without collisions until time t + δt given that it
survived until time t is:

P (t+ δt)

P (t)
= 1 +

1

P (t)

dP

dt
δt = 1− nσvδt

⇒ dP

dt
= −nvσ

So,

P (t) = e−nσvt

Probability fo molecule surviving until time t and colliding in the next δt is:

Probability of finally colliding = e−nσvtnσvdt

Now, we can find the average time between collision:

τ =

∫ ∞

0

te−nσvtnσvdt = ... =
1

nσv

7.4.2 Ingredient 2: collision cross-section

A collision will take place when the centres of the larger molecule fall within a tube of
radius a1 + a2. So, collision cross-section is:

σ = π(a1 + a2)
2
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7.4.3 Ingredient 3: mean relative speed

We have assumed so far only a single particle moving in an array of fixed particles. In
reality, other particles are moving as well. So you do an average of the vector sum of
velocities.

v⃗r = v⃗1 − v⃗2

v2r = v21 + v22 − 2v⃗1 · v⃗2
Averaging over all v1 and v2:

⟨v2r⟩ = ⟨v21⟩+ ⟨v22⟩ = 2⟨v⟩

⟨vr⟩ ≈
√
2⟨v⟩

7.5 Mean kinetic energy of molecules hitting wall

Mean KE per particle at wall =
Energy flux

Particle flux
= 2kBT

Derivation

Energy flux =

∫ ∞

0

∫ π
2

0

(
1

2
mv2) ·

(
v cos θ · nf(v)dv · 1

2
sin θdθ

)
=

1

8
mn⟨v3⟩

Particle flux =

∫ ∞

0

∫ π
2

0

v cos θ · nf(v)dv · 1
2
sin θdθ

Do the ratio of energy flux over particle flux, do integration by parts, and something
will cancel out:

⟨v3⟩ = ... =
4kBT

m
⟨v⟩

So,

⟨KE⟩ =
1
8
mn · 4kBT

m
⟨v⟩

1
4
n⟨v⟩

= 2kBT

7.6 3D v.s. 2D

3D
Flux:

Φ =
1

4
n⟨v⟩

2D

Φ =
1

π
n⟨v⟩
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Q: Two identical large vessels containing argon initially at temperature T0 and
pressure p0 are connected by a hole of diameter much less than the mean free path.
One vessel is then heated to T1 while the other remains at T0. Under steady-state
conditions, what pressure difference is then established between the two vessels?
A:

1. Equal mass flow:
1

4
nAv̄A =

1

4
nB v̄B

2. Ideal gas equation

pA = nAkBTA and pB = nBkBTB and p0 = n0kBT0

3. Conservation of particles:
nA + nB = 2n0

∆p = pB − pA

= nBkBTB − nAkBTA

= nBkBTB

(
1− nATA

nBTB

)
= nBkBTB

(
1− v̄BTA

v̄ATB

)
= nBkBTB

(
1−

√
TA
TB

)

= nBkBT0

(
1−

√
T1
T0

)

And

nA + nB = 2n0

nB

(
v̄B
v̄A

+ 1

)
= 2

p0
kBT0

⇒ nBkBT0 =
2p0√
TB

TA
+ 1

Hence,

∆p = 2p0
1−

√
T1

T0

1 +
√

T1

T0
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8 Transport Phenomena

8.1 Momentum transport - Viscosity

Viscosity is a measure of the resistance of the fluid to be deformed by shear stress τij.

τxz =
F

A
= η

d⟨vx⟩
dz

where units of η is Pas = Nm−2s.

Molecules travelling in the +z direction move from a layer in which ⟨ux⟩ is smaller to
one in which ⟨ux⟩ is larger, and hence they transfer net momentum to that layer in
the −x direction. Hence, the shear stress τxz is equal to the transverse momentum
transported across each square metre per second, which is the flux of momentum:

Momentum flux: ⊓z = −ηd⟨vx⟩
dz

Boundary conditions:
1. Top plate: ⟨vx⟩ = u⃗
2. Bottom plate: ⟨vx⟩ = 0

Deriving viscosity of gas

dN = v cos θ · nf(v)dv · 1
2
sin θdθ

Find the mean extra momentum per molecule:

p = −m
(
∂⟨ux⟩
∂z

)
λ cos θ
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Hence, the net momentum brought to the plane per unit area is:

⊓z =

∫ ∞

0

∫ π

0

v cos θ · nf(v)dv · 1
2
sin θdθ ·m

(
−∂⟨ux⟩

∂z

)
λ cos θ

= ...

= − 1

3
nmλ⟨v⟩︸ ︷︷ ︸
viscosity

·∂⟨ux⟩
∂z

Finally, we have the expression for dynamic viscosity:

η =
1

3
mnλ⟨v⟩ = 1

3
ρ⟨v⟩λ

1. Independent of pressure since λ ∝ n−1

2. η ∝
√
T since λn is constant and ⟨v⟩ ∝

√
T .

3. η ∝ d−2
√
m

Substituting expression for λ ≈ 1√
2nσ

and ⟨v⟩ =
√

8kBT
πm

, we have in full:

η =
2

3σ

√
mkBT

π

Many assumptions are made:

L≫ λ≫ d

1. λ≫ d (pressure not too high): so that we can neglect collisions involving more than
two particles
2. λ≪ L (pressure not too low): so that molecules mainly collide with each other and
not with the container walls.
3. Factor of 1

3
not correct. Model assumed uniform velocity distribution, but velocity

distribution is different in different layers (because of the shear stress applied).

8.2 Energy transport - Thermal conductivity

Heat is ”energy in transit”. It quantifies the transfer of energy in response to a tem-
perature gradient.

Define heat flux, J which flows against the temperature gradient from hot to cold (heat
flows downhill):

Jz − κ

(
∂T

∂z

)
or J = −κ∇T

Units: Js−1m−2 or Wm−2.
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Deriving thermal conductivity

dN = v cos θ · nf(v)dv · 1
2
sin θdθ

Find the excess heat brought by a molecule to a plane perpendicular to z:

H = Cmolecule ×∆T = Cmolecule

(
∂T

∂z

)
λ cos θ

Hence, the total thermal energy transported per unit area per unit time is (heat flux):

Jz =

∫ ∞

0

∫ π

0

v cos θ · nf(v)dv · 1
2
sin θdθ ·

(
−Cmolecule

(
∂T

∂z

)
λ cos θ

)
= ...

= − 1

3
nCmoleculeλ⟨v⟩︸ ︷︷ ︸

conductivity

·∂⟨T ⟩
∂z

where CV = nCmolecule and it is the heat capacity per unit volume.

Finally, we have the expression for conductivity:

κ =
1

3
CV ⟨v⟩λ

”One-third C c l”.

1. κ is independent of pressure.
2. κ ∝

√
T

3. Using λ ≈ 1√
2nσ

and ⟨v⟩ =
√

8kBT
πm

:

κ =
2

3σ
Cmolecule

√
kBT

πm

So, κ ∝ 1
d2

√
m

So, (remembering this kind of ratios is IMPT)

κ

η
=
Cmolecule

m
= CV,s

where CV,s is the specific heat capacity per unit volume.
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8.2.1 Refining the formula for thermal conductivity

After accounting for heat stored in translational, rotational and vibrational degrees of
freedom:

Eucken’s formula: κ =
1

4
(9γ − 5)ηCV,s

8.2.2 Measuring heat conductivity

Use coaxial cylinder method.

• Gas of interest is filled between 2 coaxial cylinders.

• Temperature of outer cylinder is fixed to Tb by temperature bath.

• Inner cylinder is heated at rate Q per unit length (Wm−1) until it reaches Ta.

Q = 2πrJz = 2πr

(
−κ∂T

∂r

)
Integration gives an expression for κ:

Q

∫ b

a

dr

r
= −2πκ

∫ Tb

Ta

dT

8.3 Particle transport - Diffusion

Fick’s Law gives the flux of labelled molecules in the z-direction:

Φz = −D
(
∂n∗

∂z

)
or Φ = −D∇n∗

where n∗(z) is the number density of labelled molecules and D is the coefficient of
self-diffusion. Units of Φz is m−2s−1.
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Deriving self diffusing coefficient

Consider a thin layer of gas of thickness dz and area A.

Flux in is AΦz. Flux out is A[Φz +
∂Φz

∂z
dz]. The net flux is equal to the time-dependent

changes in the number of labelled particles inside the layer:

∂

∂t
(n∗Adz) = −A∂Φz

∂z
dz

Hence, the excess labelled molecules hitting per unit area per unit time is:

Φz =

∫ ∞

0

∫ π

0

v cos θ · nf(v)dv · 1
2
sin θdθ ·

(
−∂n

∗

∂z
λ cos θ

)
= ...

=
1

3
λ⟨v⟩︸ ︷︷ ︸

diffusing
coefficient

∂n∗

∂z

Finally, we have the expression for the diffusing coefficient:

D =
1

3
⟨v⟩λ =

2

3nσ

√
kBT

πm

We see that:
1. D ∝ p−1

2. D ∝ T 3/2

3. Dmn = Dρ = η
4. D ∝ 1

d2
√

m

For mixture of two different type of molecules of mass m1 and m2, diameter d1 and d2:
1. Replace collision cross section, σ with:

σ = π

[
d1 + d2

2

]2
2. Replace m with reduced mass:

µ =
2m1m2

m1 +m2
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Summary of dependencies

Applications

1. Large electricity generators have rotating electromagnet that is cooled by hydro-
gen gas.

• Hydrogen: light mass and higher heat capacity compared with noble gas →
excellent thermal conductivity. Also has low viscosity.

• Both are independent of pressure → so one can increase the pressure to
increase the thermal capacity of the gas.

• However, H2 has to be quite pure (97%).

2. Halogen light bulbs filled with high pressure Xe gas

• Why high pressure: at such high temperatures, the tungsten atoms would
sublime and escape. Liquids would boil then its vapour pressure exceeds
the ambient pressure. So high pressure of surrounding halogen suppress the
escape of tungsten atoms.

• Xenon: high density, huge atoms → reduce diffusion rate of Tungsten →
retain good lifetime

• Also, low heat capacity, slow atomic velocities and short mean free path
of Xe → low thermal conductivity → reduce conductive heat loss from the
bulb.
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8.4 Thermal diffusion equation

heat J = −κ∇T , particle Φ = −D∇n∗ , current J e = −σ∇ϕ

Feynman: the same equation have the same solution.

By conservation of particles and using divergence theorem, we obtain the 3D diffusion
equation:

∂n∗

∂t
= D∇2n∗

Derivation:
The total number of labelled particles that flow out of a closed surface must be
balanced by the rate of decrease of labelled particles inside the volume V which is
surrounded by S: ∫

S

Φ · dS = − ∂

∂t

∫
V

n∗dV

Applying divergence theorem:

∫
V

∇ ·Φ dV = − ∂

∂t

∫
V

n∗dV

∇ ·Φ = −∂n
∗

∂t

⇒ ∂n∗

∂t
= D∇2n∗

Thermal diffusion equation

Derivation:
Consider a volume V. The total heat flow out of V through a closed surface S is
equal to rate of heat loss by body:∫

S

J · dS = −
∫
V

CV
∂T

∂t
dV =

∫
V

∇ · J dV

where C is the heat capacity per unit volume.

⇒ ∇ · J = −CV
∂T

∂t

Knowing that J = −κ∇T ,
∂T

∂t
= D∇2T

where D =
κ

CV
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Solving thermal diffusion equation

Step 1: consider separable solution:

T (r, t) = R(r)τ(t)

Thermal diffusion equation becomes:

τ ′(t)

τ(t)
=
D∇2R(r)

R(r)
= −α

Step 2: Solve.
For the t dependence part:

ln(τ) = −αt+ C1 ⇒ τ(t) = Ae−αt

For the spatial part:

∇2R(r) = − α

D
R(r)

Try solution Rk(r) = R0,ke
ik·r, so:

−k2Rk(r) = − α

D
Rk(r) ⇒ α = k2D

Step 3: Form general solution by linear combinations

T (r, t) =
∑
k

R0,ke
ik·r e−k2Dt︸ ︷︷ ︸

decay

or Fourier transform could be used by converting summation to integral:

T (r, t) =

∫
R0(k)e

ik·re−k2Dtdk

where R0(k) is the Fourier Transform of the initial temperature profile:

R0k =
1

(2π)n

∫
T (r, 0)e−ik·rdk

Step 4: investigations.

1. Different Fourier components have different time dependence, short k ones decay
faster. Characteristic time:

τ =
1

k2D
=

λ2

4π2D

Interpretation: for long time, longest wavelength dominate as they have the
longest time constants. The short ones would have decayed away. For example,
time for center of egg to reach temperature is related to square of its radius.
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2. Boundary condition problem: relaxation of temperature profile

(a) Oscillating boundary condition

Look for periodic solutions in the temporal part:

−iω = −Dk2 ⇒ k2 =
iω

D

∴ k = ±(1 + i)

√
ω

2D

Avoiding divergence as x→ ∞,

T (x, t) =
∑
ω

A(ω)e−iωte((i−1)
√

ω
2D )x

=
∑
ω

A(ω)e−x/δe−i(ωt−x/δ)

Then substitute the relevant boundary conditions to solve.
Relevant quantities:

Skin depth: δ =

√
2D

ω

Key features:
1. T falls off exponentially as e−x/δ

2. There is a phase shift of x
δ
rads in the oscillations.

3. δ ∝ ω−1/2 so faster oscillations fall off faster.

Solving steady state (Laplace equation)

No time dependence:
∇2T = 0

Spherical symmetry:

∇2T =
1

r2
∂

∂r

(
r2
∂T

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
+

1

r2 sin2 θ

∂2T

∂ϕ2
= 0

For a spherical object that conducts heat isotropically in all directions, so T is only a
function of r:

∇2T =
1

r2
∂

∂r

(
r2
∂T

∂r

)
General solution:

T = A+
B

r
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Problem solving tips

1. To find minimum temperature, find stationary points (differentiate) instead
of observing the cos since there is an exponential envelope.

∼ End of Notes ∼
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